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The pervasive (and over-simplified) view of signal transduction

Insulin receptor signaling
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Cell Signaling cartoon of Insulin receptor signaling

For a long time, these models have not taken into consideration cellular architecture



Increasing understanding of cellular architecture
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cytoplasm is very crowed

The cellular protein concentration is ~ 200 mg/ml.
That's a few 10° protein molecules / human cell
28 - 36 x 1012 cells in the human body

Heinrich et al Nature 2021



The understudied proteins challenge

Massive bias in the functional characterisation of the human proteome:

95% of publications on 5,000 human proteins

2 publications per day on p53 - nothing on 1,000s of others

Function (

in disease) understood

Much worse in non-model organisms
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Are understudied proteins less important?

Opinion Science

e 18% essential genes in human cell lines o
Medicine must look past

e 31% essential genes in synthetic minimal bacterium the Kardashian of proteins

e Many understudied proteins in rare diseases

e Rare genetic variants drive common diseases, €.g. cancer

'/ﬁ
e 10% of druggable proteins targeted by FDA-approved drugs
| -
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Financial Times, 27.07.2022

Wang et al, Science, 2015; Hutchison, et al, Science, 2016; Stoeger & Amaral, eLife, 2020; Oprea et al, Nat Rev Drug Discov, 2018
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to discover for youl
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Cell signaling is initated at different organelles

* Plasma membrane
 Mitochondria
* Endoplasmic reticulum
* Lysosomes
e Other less well understood

How does organelle signaling contribute to
cellular function?




Signaling from two seeminlgy ,antagonisitic’ organelles

1. Endoplasmic reticulum (ER): Anabolic organelle -> protein & lipid synthesis

2. Lysosomes: Catabolic organelles -> protein & lipid degradation

Merge
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ER signaling as a paradigm for organelle signaling

Biosynthetic organelle & a major site for protein and lipid synthesis

inner nuclear membrane

outer nuclear
nucleus membrane ER membrane

Nuclear
pore

Nuclear
envelope
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Cisternal
space

Rough endoplasmic
reticulum

Ribosomes

Smooth endoplasmic
reticulum

Peripheral
sheet

Sheets: translation (rER) 200 nm
tubules: transport & lipid synthesis (smooth ER) occupies approx. 10-20% of the cellular volume



ER signaling as a paradigm for organelle signaling

How do cells monitor the integrity of the ER?
How do cells adapt the protein & lipid content at the ER?

How do cells report the status of the ER to the nucleus?

The unfolded protein response (UPR) functionally links these processes



UPR
components

UPR and its role in diseases

Table 1. Physiological functions of UPR components in mouse models and their genetic association with human disease
Gene Factors that Phenotypes of knockout Genetic association with References
regulate expression mouse model human diseases
IRETa N.A. (1) Embryonic lethality at E12.5 (1) Human somatic cancers Zhang et al., 2005,
due to liver hypoplasia; 2011; Greenman
(2) Liver deletion: hypolipidemia et al., 2007
XBP1s XBP1s and ATFé6a (1) Embryonic lethality ot E13.5 (1) Inflammatory bowel disease; Kakiuchi et al., 2003k,
due to liver hypoplasia; (2) Schizophrenia in the Japanese 2004; Kaser et al.,
(2) Liver deletion: hypolipidemia; population; (3) Bipolar disorder; 2008: Yilmaz et al.,
(3) Intestinal epithelial cell deletion: (4) Ischemic stroke 2010
enteritis; (4) Pancreatic acinar cell
deletion: extensive pancreas regenera-
tion; (5) Pancreatic B cell deletion:
hyperglycemia; (6) Neuron deletion:
leptin resistance
_ | AlFba N.A. (1) Susceptible to pharmacologically (1) Type 2 diabetes and pre-diabetic Chu et al., 2007;
induced ER stress traits; (2) Increased plasma Wu et al., 2007;
cholesterol levels Meex et al., 2009
CREBH PPARw, HNF4e, (1) Hypoterremia and spleen iron (1) Extreme hypertriglyceridemia Zhang et al., 2006;
and ATFéu sequestration; (2) Hyperlipidemia; Vecchi et al., 2009;
(3) Liver knockdown: fasting JH. lee et al., 2011
hyperglycemia
PERK N.A. (1) Neonatal hyperglycemia (1) WolcottRallison syndrome; Delépine et al., 2000;
(2) Supranuclear palsy Haglinger et al., 2011
ATF4 CHQOP (1) Delayed bone formation; MNLA. Elefteriou et al., 2006;
(2) Severe fetal anemia; Costa-Mattioli et al.,
(3) Increased insulin sensitivity; 2007 ; Yamaguchi
(4) Defects in long-term memory et al., 2008
CHOP ATF4 and ATFéa (1) Protected from pharmacologically (1) Early-onset type 2 diabetes Oyadomari et al., 2002;

induced ER stress;

(2) Protected from type 2 diabetes;
(3) Protected from atherosclerosis;

(4) Protected from leukodystrophy

in Italians

Marciniak et al., 2004;
Silva et al., 2005;
Gragnoli, 2008;

Song et al., 2008



Unfolded protein response - UPR

The UPR monitors the proteome and lipidome of the ER and prevents defects that jeoparidize ER integrity.
To do so the UPR sends a signal from the lumen of the ER to

(1) the nucleus to change the transcriptional program
(1) ribosomes to change/dampen translation (and in turn change transcription)

Very generally speaking the UPR has two possible outcomes:

1. Homeostatic UPR activation implements adaptive programs that modulate, augment and finally resolve ER stress.
2. Maladaptive and/or chronic UPR outputs triggers pro-inflammatory and pro-death signals

How can the UPR transmit a signal from the lumen of ER to other organelles?



There are three distinict UPR branches in human cells

(1) ATF6, (2) PERK, (3) IRE1
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DOI: 10.1126/science.1209038



https://doi.org/10.1126/science.1209038

The three UPR pathways

regulated Irel-dependent decay (RIDD)

r CHOP
V)

Fig. 2. (A to C) The three branches of the UPR. Three families of signal trans-
ducers (ATF6, PERK, and IRE1) sense the protein-folding conditions in the ER
lumen and transmit that information, resulting in production of bZIP transcrip-
tion regulators that enter the nudeus to drive transcription of UPR target genes.
Each pathway uses a different mechanism of signal transduction: ATFé by

Antioxidant
Redox e _C!laperone§
r target genes r Col death - r E’B‘A’n‘%’?«"&ﬁ

RoLsY

regulated proteolysis, PERK by translational control, and IRE1 by nonconven-
tional mRNA splicing. In addition to the transcriptional responses that largely
serve to increase the protein-folding capadity in the ER, both PERK and IRE1
reduce the ER folding load by down-tuning translation and degrading ER-
bound mRNAs, respectively.
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The ER and Iysosom‘es form direct contact sites o michael ebner
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Lysosome signaling

How do cells monitor the integrity of the lysosomes?

How do cells adapt the protein & lipid content of lysosomes and control the number of
lysosomes?

How do cells signal from the lysosomes into the nucleus?

The answers to these questions are only partially clear!



Lysosome function
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Defects in lysosome function

cause neurodegeneration
doi.org/10.1038/s41580-019-0185-4


https://www.nature.com/articles/s41580-019-0185-4/figures/1

The awesome lysosome

Andrea Ballabiot%>*

In the early 50s, Christian De Duve identified a new cellular structure, the lysosome, defined as
the cell’s “suicide bag” (de Duve, 2005). Sixty years later, it is clear that the lysosome greatly
exceeded the expectations of its discoverer. Over 50 different types of lysosomal storage
diseases have been identified, each due to the deficiency or malfunction of a specific lysosomal
protein. In addition, an important role of the lysosome has been unveiled in several common
human diseases, such as cancer, obesity, neurode- generative diseases, and infection. Recent
studies have led to the identification of a lysosome-to-nucleus signaling pathway and a
lysosomal gene network that regulate cellular clearance and energy metabolism. These
observations have opened a completely new field of research and changed our traditional view
of the lysosome from a dead-end organelle to a control center of cell metabolism.

DOI 10.15252/emmm.201505966



Lysosomes are major signaling organelles
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major site of TOR (target of rapamycin) signaling & hence cell growth regulation


https://www.nature.com/articles/s41580-019-0185-4/figures/1

Discovery of Rapamycin

14 March 1991; accepted 25 June 1991

. Targets for Cell Cycle Arrest by the
Immunosupprcssant Rapamycin in Yeast

JosePH HEITMAN,* N. RA0 Movva, MICHAEL N. HALLT

FK506 and rapamycin are related immunosuppressive compounds that block helper T
cell activation by interfering with signal transduction. In vitro, both drugs bind and
inhibit the FK506-binding protein (FKBP) proline rotamase. Saccharomyces cerevisiae
cells treated with rapamycin irreversibly arrested in the G1 phase of the cell cycle. An
== FKBP-rapamycin complex is concluded to be the toxic agent because (i) strains that
== lack FKBP proline rotamase, encoded by FPR1, were viable and fully resistant to

" rapamycin and (ii) FK506 antagonized rapamycin toxicity in vivo. Mutations that
conferred rapamycin resistance altered conserved residues in FKBP that are critical for
drug binding. Two genes other than FPR1, named TOR1 and TOR2, that participate
in rapamycin toxicity were identified. Nonallelic noncomplementation between FPRI1,
TOR1, and TOR?2 alleles suggests that the products of these genes may interact as
subunits of a complex. Such a complex may mediate nuclear entry of signals

required for progression through the cell cycle.

proline rotamase activity but is not immu- s

Moai statues

Georges Noégrady conducted bio-prospecting of soil: he wanted to
understand why inhabitants of Rapa Nui did not get tetanus -> did
not find an answer but gave the soil sample to a company called
Ayerst Pharmaceuticals - now Pfizer. They isolated from a fungus,
Rapamycin (a macrolide) that was used as an immunosuppressant

nosuppressive (15). Our studies investigate
the action of rapamycin and FK506 in yeast.

Growth of isogenic haploid (Fig. 1) and
diploid derivatives of S. cerevisiae strain
JK9-3d (16, 17) was sensitive to the immu-
nosuppressant rapamycin (18) with a mini-
mum inhibitory concentration (MIC) of

To study the interaction of FKBP with
rapamycin and identify other proteins that
contribute to rapamycin toxicity, we isolated
rapamycin-resistant yeast mutants. Sponta-
neous independent mutants resistant to ra-
pamycin (0.1 pg/ml) were isolated from a

and o~ hanlnid derivatives of strain TK9-3d



MTOR structure + Rapamycin

Sirolimus, Everolimus and other rapalogues
Immunosupressive drugs & anti-cancer drugs

B
FKBP

FAT/Kinase ¢,

Active site (S, IS FKBP R
cleft . 5

1 MDa complex | -

FK506 binding protein (FKBP) and Rapamycin form a complex (an aduct)
This complex binds to the FKBP-rapamycin complex binding (FRB) domain

at the N-terminus of the TOR Kinase domain Aylett et al,, Science 2016



mMTORC1 is the central regulator of cell growth

Integration of cell intrinsic signals (amino acids) & extracellular signals (growth factors)
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MTOR is hyperactive in Tumors, metabolic and neurological disorders, and inflammation

mTOR pathway hyperactivity causes a group 14
of rare diseases (TORopathies)

e.g. LoF in Tsc1/2

Tuberous Sclerosis (TSC)

Tuberous sclerosis complex (TSC), also known
as tuberous sclerosis, is a rare genetic disease
that causes non-cancerous tumors
(Hamartome) to grow in the brain and several
areas of the body, including the spinal cord,
nerves, eyes, lung, heart, kidneys, and skin. In
addition many patients develop epilepsy,
autism and learning difficulties from birth

\ Brain
Lung cancer Neurodegenerative disease
LAM Depression
Alcoholism
Blood TSC
Leukemia/Lymphoma
Breast
Heart Breast cancer
Cardiac hypetrophy
Restenosis
Pancreas
Liver Diabetes type Il
HCC
Diabetes type Il
Hepatic steatosis

Obesity Skin

Metabolic syndrome Peutz-Jeghers syndrome

Cowden syndrome
SLE

Kidney
Renal cell carcinoma

Diabetic nephropathy Colon

Intestine

Peutz-Jeghers syndrome
Adipose Cowden syndrome
Obesity

Metabolic syndrome

Current Opinion in Cell Biology

https://www.sciencedirect.com/science/article/pii/S0955067411001116



https://www.sciencedirect.com/science/article/pii/S0955067411001116

How does mTORC1 signaling control cell growth?

Integration of cell intrinsic signals (e.g.: amino acid) & extracellular signals (growth factors)
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Activation of mTORC1 on the lysosomal surface
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Lysosomal mTORC1 signhaling controls growth

of organisms
mutations in the 3‘'UTR of LAMTOR?2

of individual cells
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Based on these models mTORC1 is either on or off
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TRENDS in Molecular Medicine

How is spatio-temporal substrate specificity of mTOR defined?
Are there scenarios were growth factor signaling can be uncoupled
from nutrients sensing and vice versa?

Efeyan, A
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A substrate-specific mMTORCI1 pathway
underlies Birt—-Hogg-Dubé syndrome

https://doi.org/10.1038/s41586-020-2444-0 Gennaro Napolitano'*'°, Chiara Di Malta''°, Alessandra Esposito’, Mariana E. G. de Araujo®,
Salvatore Pece®®, Giovanni Bertalot®, Maria Matarese', Valerio Benedetti', Angela Zampelli',
Taras Stasyk?®, Diletta Siciliano', Alessandro Venuta', Marcella Cesana', Claudia Vilardo',
Accepted: 27 April 2020 Edoardo Nusco', Jlenia Monfregola', Alessia Calcagni®’, Pier Paolo Di Fiore*®,

Lukas A. Huber*® & Andrea Ballabio'**"®*

Received: 3 December 2019

Published online: 1 July 2020
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The mechanistic target of rapamycin complex1(mTORCI) is akey metabolic hub that
controls the cellular response to environmental cues by exerting its kinase activity on
multiple substrates'. However, whether mTORC1 responds to diverse stimuli by
differentially phosphorylating specific substrates is poorly understood. Here we show
thattranscription factor EB (TFEB), a master regulator of lysosomal biogenesis and
autophagy*”, is phosphorylated by mTORC1 via a substrate-specific mechanism that
is mediated by Rag GTPases. Owing to this mechanism, the phosphorylation of
TFEB—unlike other substrates of mMTORCI, such as S6K and 4E-BP1—is strictly
dependent on the amino-acid-mediated activation of RagC and RagD GTPases, butis
insensitive to RHEB activity induced by growth factors. This mechanism has a crucial
rolein Birt—-Hogg-Dubé syndrome, a disorder that is caused by mutations in the RagC
and RagD activator folliculin (FLCN) and is characterized by benign skin tumours, lung
and kidney cysts and renal cell carcinoma®’. We found that constitutive activation of
TFEB is the main driver of the kidney abnormalities and mTORC1 hyperactivityina
mouse model of Birt-Hogg-Dubé syndrome. Accordingly, depletion of TFEB in
kidneys of these mice fully rescued the disease phenotype and associated lethality,
and normalized mTORCI activity. Our findings identify amechanism that enables
differential phosphorylation of mMTORCI substrates, the dysregulation of which leads
tokidney cysts and cancer.



TFEB phosphorylation does not require RHEB
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MTORC1 can be on for TFEB and off for S6K
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TRENDS in Molecular Medicine

According to the data we just discussed, this model is too simple....

Efeyan, A



Rag GTPases mediate mTORC1—-TFEB interaction, but not S6K
Interaction

— -
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RagA-GTP / RagC-GDP 2: RagA(Q66LNVRagC(S75N) + TFEB
3: RagA(T21N)/RagCiQ120L)
4: RagA(Q66LVRagC{S75N)

in vitro binding in vivo binding

Why bother and do two experiments that show RagA/C — TFEB interaction?

Figure 2



Rag GTPase are required for TFEB phosphorylation
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mMTORC1 specificity towards TFEB is mediated by Rag’s
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TFEB is recruited by active Rag-GTPases
S6K is recruited by Raptor, and active Rheb and active Rag-GTPases

MTORC1 dependent TFEB phopshorylation is controlled by amino acids
and not by growth factors

TFEB and S6K have different substrate recruitment to mTORC1



TFEB phosphorylation requires active RagC (RagC-GDP)
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Folliculin (FLCN, the GAP for RagC) is essential for TFEB
phosphorylation
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Together, these data suggest that a dimer of RagA and inactive
RagC-GTP is unable to promote mTORC1 activity towards TFEB, whereas it
retains—to a large extent—its ability to promote mTORC1 lysosomal
Extended Data Fig. 8 | recruitment and consequent phosphorylation of S6K and 4E-BP1.



Mutations in FLCN cause Birt-Hogg-Dubé-Syndrom (BHDS)

Prof. lIvan Tancevski, Pneumologische Ambulanz, Univ.-Klinik fir Innere Medizin Il

frequency: 1:200.000 - 1:250.000 worldwide

genetics: Mutation in FLCN-gene

clinical manifestation:

- Lung-cysts & recurrent pneumothorax.

- fibrofollikulomas (bengine tumors in the face, head, neck)

- high risk for renal carcinoma.
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A 45-year-old woman presents and requests referral to the Department of Pulmonology at the Medical University of Innsbruck.
Medical history:

The patient reports that she had led a normal life and worked as a nurse until her mid-30s.

1.She suddenly experienced a spontaneous pneumothorax on one side.

2.In the following years, she had more than 10 pneumothoraces, including simultaneous bilateral episodes.

3.She underwent partial lung resection and several pleurodeses.

4.(Pleurodesis: a procedure in which the pleural layers are fused—e.qg., by talc instillation—to prevent further pneumothoraces.
During the partial lung resection, a large cyst was surgically removed to reduce the risk of recurrence.)

5.0ver time, fibrofolliculomas have gradually developed on her face.
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Pulmonale Zysten (rote Pfeile) und Pneumothorax (blau) Fibrofollikulome Nierentumore?




TFEB drives the kidney phenotype of BHD mice
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Figure 4

These results suggest that the constitutive activation of TFEB as a result of the loss of function of
FLCN is a crucial determinant of the kidney phenotype associated with BHD syndrome.



The new model
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