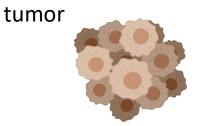
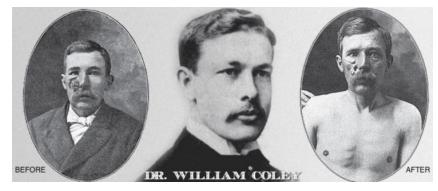

Tumor Antigens and Cancer Vaccines

MCBO Core Lecture II Guido Wollmann

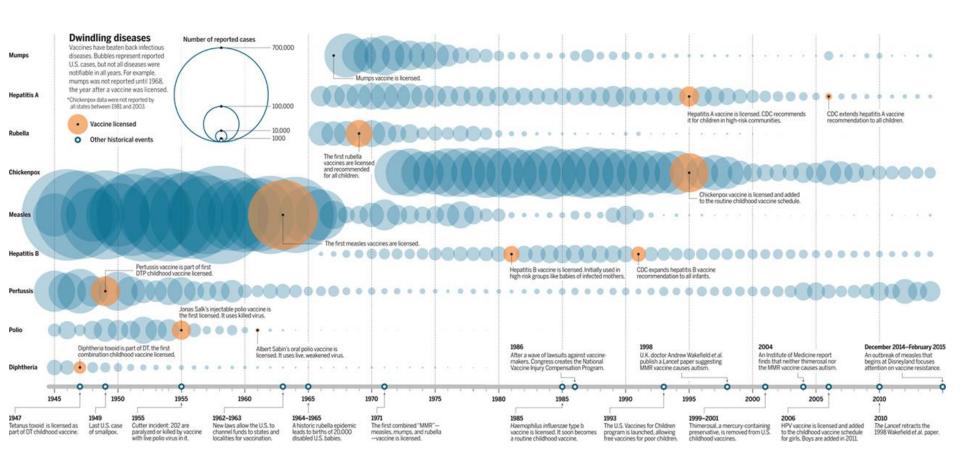
Internal Medicine V – Hematology/Oncology Institute of Virology

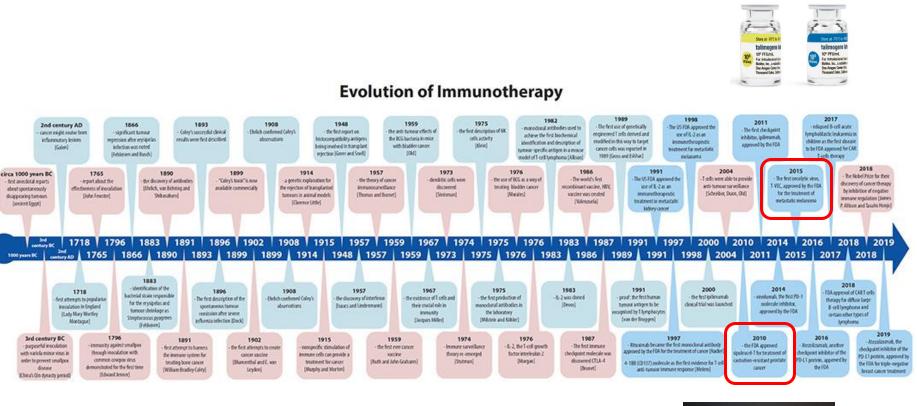

History


Edward Jenner

EDWARD JENNER (1749-1823) Hyperlague la varience pour la granuer for

William Coley

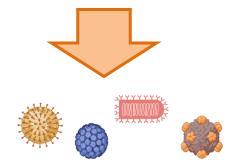



History

Century of vaccines!

highly successful development to fight pathogen disease burden

History



challenge to apply vaccines as tumor immunotherapies

fundamental difference

pathogen vaccine

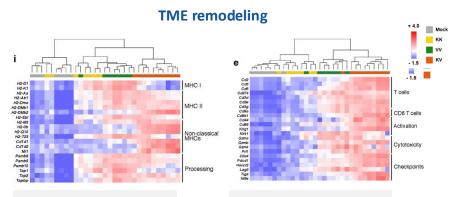
A pathogen is a foreign invader. The invader or parts of it can be directly used.

vaccine is based on MATERIAL

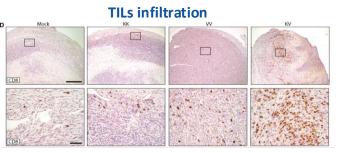
vector vaccines are the exception

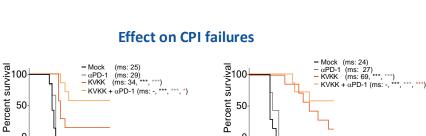
tumor vaccine

A tumor is part of oneself. The tumor cannot be directly used

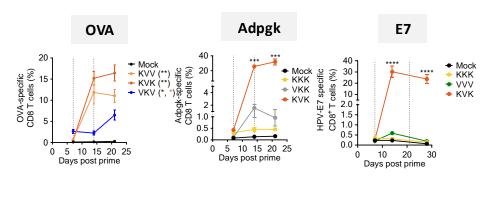

vaccine is based on **INFORMATION**

vector vaccines are the rule


Cancer vaccines work! in mice

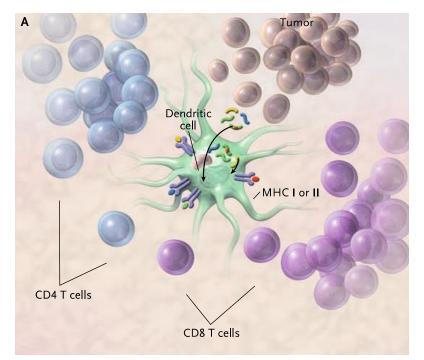


Antigen presentation


T cells

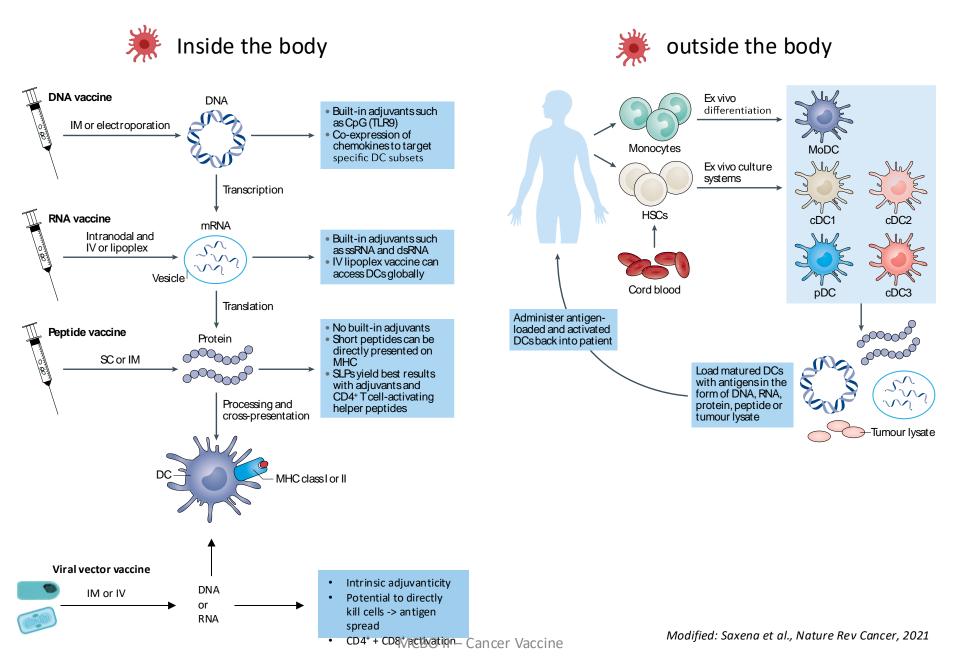
Antigen-specific T cell induction

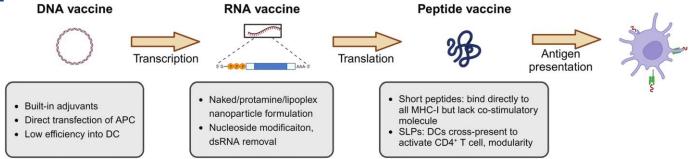
MCBO II – Cancer Vaccine


0↓ 0

20 40 60 80 100

Days post tumor


Vaccine


Platform VS Target

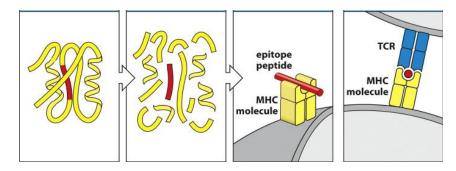
General requirements

- target: antigen presenting cells (DCs)
- MHC-1 presentation = intracellular proteins
- immune adjuvanticity

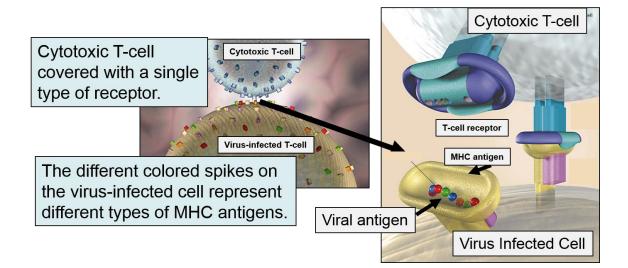
Fig. 5 Direct delivery of antigen. TAA or TSA, which are the antigens with tumor immunogenicity, could be delivered directly into the body as DNA, RNA, or peptides using different adjuvants. DNA and RNA vaccines provide the potential for more efficient delivery and sustained expression of the target antigen, while peptide vaccines are generally easier to produce and have a strong safety profile. TAA Tumor-associated antigen, TSA Tumor-specific antigen, APC Antigen presentation cell, DC Dendritic cell, MHC-I Major histocompatibility complex-I, SLPs Synthetic long peptides; dsRNA, Double-stranded RNA

Table 1. Advantages and disadvantages of different forms in neoantigen cancer vaccine			
Vaccine types	Advantages	Disadvantages	
DNA vaccine	 Low cost; Cell-independent production; Long-lasting immune response potential for targeting multiple neoantigens 	 Risk of integration into host genome; Risk of autoimmune reactions Low transfection efficiency 	
RNA vaccine	 Rapid development and easy modification; High immunogenicity; Cell-independent production; Intrinsic adjuvant effect; High efficiency into DCs 	 Fast degradation speed; Potential for inflammatory reaction 	
Peptide vaccine	 High specificity and safety; Cell-independent production; Low risk of autoimmunity; Direct presentation on MHC in short peptides; Proven clinical activity in SLP 	 High cost; Complex manufacture; Requirement for suitable adjuvants; Potential for HLA-restriction 	
Cell-based vaccine	 Strong immune stimulation; Multi-form antigen loading 	 High cost; Potential for immunogenicity of the cells; Need for patient-specific customization 	
Viral and bacterial vector vaccine	 High immunogenicity; Long-lasting immune response; Self adjuvanticity 	 Potential for vector immunogenicity; Need for specialized storage conditions 	

We don't have a shortage on effective vaccine platforms !!!



vaccine targets


= tumor antigens

Antigen presentation and recognition

antigen = only a SMALL PART of a protein

T cell recognition is HIGHLY specific for certain epitopes

Perfect world tumor antigen

homogenous expression in all tumor cells

• essential expression in tumor cells

• high immunogenicity

Perfect world tumor antigen

Tumor antigen classes

	tumor SPECIFIC antigen		tumor ASSOCIATED antigen		
	Neoantigen	Oncoviral	Cancer Testis	Overexpression	Lineage
Foreignness	high	high	low		
Immunogenicity	high	high	low		
Tolerance	low	low	high		
Shared	rarely	mostly*	mostly		
Personalized	mostly	yes (HLA)/no	rarely		
Cost	high	medium	medium		

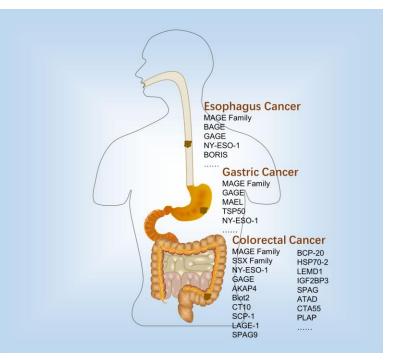
Non-personalized tumor antigens – examples

oncoviral	cancer testis (> 140 CTA)	lineage	overexpression
• HPV E6/7	• NY-ESO-1	• HER2/Neu	• MUC1
• LMP1/LMP2	• MAGE-A	• MUC1	• WT1
	• SAGE	• gp100	• EGFR
	• LY6K		
	CDCA1		

• PRAME

Oncoviral tumor antigens

Antigen	Oncovirus	Associated cancer
E6, E7	HPV	cervix CA, head-neck SCC
LMP1, LMP2	EBV	Nasopharingeal CA, B cell lymphoma
Large T, small T	Merkel Polyomavirus	skin CA
Тах	HTLV1 retrovirus	T cell leukaemia


Cancer testis antigens

over 140 cancer testis antigens (CTA) known to date

CTA main examples

Antigen	Associated cancer
NY-ESO-1	melanoma
MAGE-A	melanoma, lung
BAGE	melanoma, other cancers
PRAME	melanoma, other cancers
XAGE1B	multiple cancers
WT1	multiple cancers

CTA examples gastro-intestinal tumors

Cancer testis antigens

Tumor-associated antigen clinical trials in lung cancer

Platform	Name	ТАА	Phase	Patients		Signs of efficacy
cellular vaccine	GVAX	Autol. tumor cells	1/11	86	NCT00074295	negative
ular v	Belagenpumatucel- L	Allogenic NSCLC	111	532	NCT00676507	negative
cellu	1650-G	Allogenic NSCLC	Ш	12	NCT00654030	n.a.
	MAGE-A3	MAGE-A3	111	2312	MAGRIT, NCT00480025	negative
Ð	CIMAvax-EGF	EGF	111	579		negative
peptide	Racotumomab-alum	NeuGcGM3	111	1082	NCT01460472	low
ă	Tecemotide (L-BLP25)	MUC-1	111	1513	NCT00409188	negative
	PRAME	PRAME	I	60	NCT01159964	negative
virus	TG4010	MUC-1	II	65	NCT00415818	positive
vir	LV305	NY-ESO-1	I	47	NCT02122861	positive
DNA	V934/935	hTERT	I		NCT00753415	
RNA	CV9201	NY-ESO-1, MAGE-C1,2, Survivin, 5T4, MUC	1/11	46	NCT00923312	immunogenicity
	CV9202	NY-ESO-1, MAGE-C1,2, Survivin, 5T4, MUC	I	26		immunogenicity
	mRNA-5671/V941	KRAS (G12D, G12V, G13D, G12C)	I	100	NCT03948763	

=> few signs of efficacy

= vector based gene transfer

Cancer testis antigens

THE LANCET Oncology

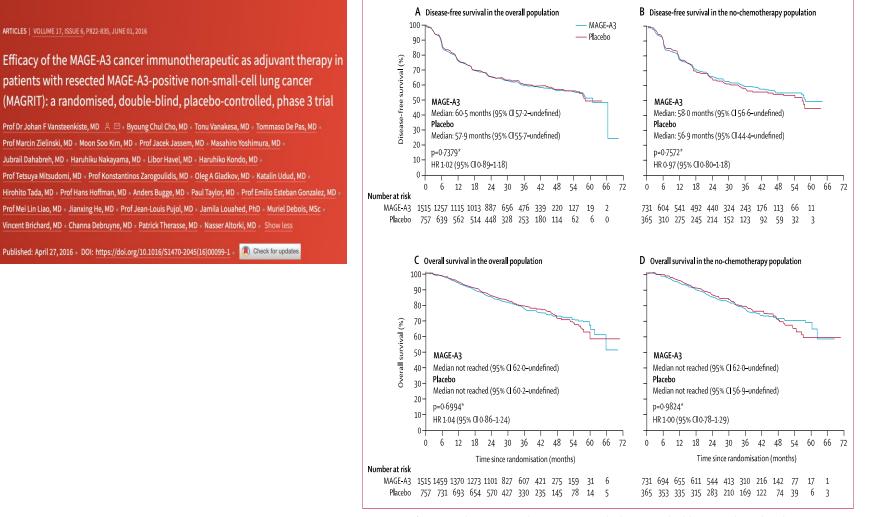


Figure 2: Disease-free survival and overall survival in the overall population and in the population that did not receive adjuvant chemotherapy

=> no signs of efficacy

Lineage / differentiation antigens

main examples

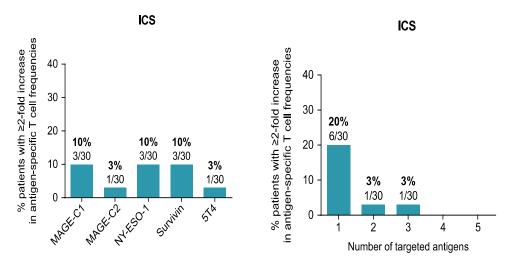
Antigen	Associated cancer
mesothelin	multiple CA
gp100	melanoma
tyrosinase	melanoma
PSA/ PSMA	prostate CA
CEA	gastric cancer, pancreatic CA
CA19-9	gastric cancer
MUC1	multiple cancers
CA125	ovarian CA

Overexpression antigens

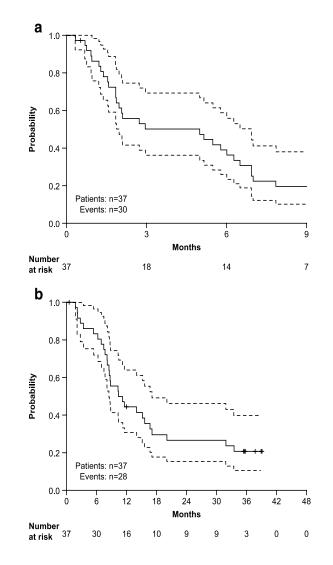
main examples

Antigen	Associated cancer
MUC1	multiple CA
WT1	multiple CA
EGFR	multiple CA
PSA/ PSMA	prostate CA
MUC1	multiple cancers

TAA combinations


NY-ESO-1, MAGE-C1, MAGE-C2, survivin, 5T4, and MUC-1

Cancer Immunology, Immunotherapy (2019) 68:799–812 https://doi.org/10.1007/s00262-019-02315-x


CLINICAL TRIAL REPORT

A phase I/IIa study of the mRNA-based cancer immunotherapy CV9201 in patients with stage IIIB/IV non-small cell lung cancer

Martin Sebastian^{1,13} · Andreas Schröder^{2,14} · Birgit Scheel² · Henoch S. Hong^{2,14} · Anke Muth² · Lotta von Boehmer^{3,15} · Alfred Zippelius⁴ · Frank Mayer^{5,16} · Martin Reck⁶ · Djordje Atanackovic^{7,17} · Michael Thomas⁸ · Folker Schneller⁹ · Jan Stöhlmacher^{10,18} · Helga Bernhard¹¹ · Andreas Gröschel^{12,19} · Thomas Lander² · Jochen Probst^{2,20} · Tanja Strack² · Volker Wiegand² · Ulrike Gnad-Vogt² · Karl-Josef Kallen^{2,21} · Ingmar Hoerr² · Florian von der Muelbe² · Mariola Fotin-Mleczek² · Alexander Knuth^{3,22} · Sven D. Koch^{2,23}

=> limited immunogenicity

Fig. 4 Kaplan–Meier **a** PFS and **b** overall survival (OS) curves from initiation of treatment for the phase IIa cohort (N=37; 86% with stage IV disease). Dashed lines represent 95% CI. Median PFS was 5.0 months (95% CI 1.8–6.3 months) and the 6- and 12-month PFS rates were 38.9% and 16.7%, respectively. Median OS was 10.8 months (95% CI 8.1–16.7 months) and survival rates at 1, 2, and 3 years were 44.4%, 26.7%, and 20.7%, respectively

Check for

TAA cancer vaccine clinical development

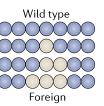
Meta-analysis

Breast CA

• 46 studies, 1698 patients: ORR* only 9%

Ovarian CA

• 32 studies, 426 patients: ORR* only 4%

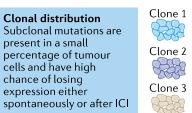

*ORR = overall response rate (incl. stable disease, partial response, complete response)

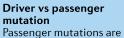
Neoantigens

Qualities of neoantigens

Foreignness

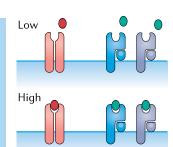
The greater the similarity to the wild-type amino acid sequence, the higher the probability of the responding T cells to be deleted during thymic selection



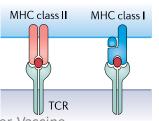

Subclonal

Clonal

Passenger

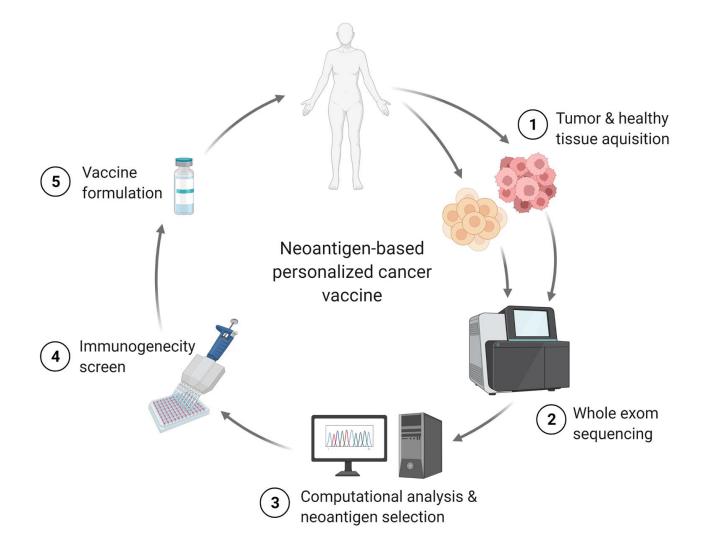

mutation

subject to loss of expression through tumour evolution or immune resistance. Driver mutations are more conserved as these serve critical survival functions

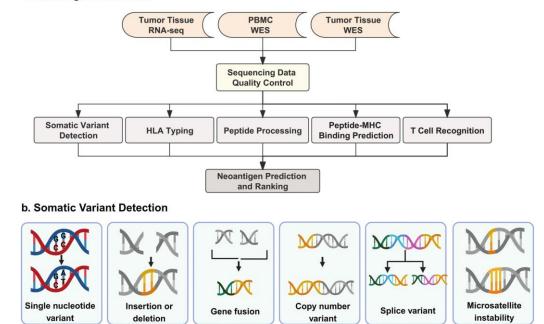

MHC presentation Neoantigen presentation on MHC class I and/or MHC class II molecules and expression in tumours with higher HLA heterozygosity in HLA class I loci is more likely to induce T cell infiltration and increase survival in response to ICI

Driver

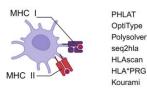
mutation


TCR avidity
High TCR avidity of neoantigens induces a strong CTL-driven response to treatment
Hard to predict

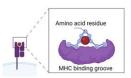
MCBO II – Cancer Vaccine


Saxena et al., Nature Rev Cancer, 2021

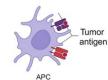
Personalized neoantigen vaccine – the simplified view



Personalized neoantigen vaccine – the complex view


a. Neoantigen Prediction

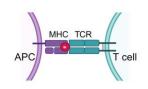
c. HLA Typing



e. Peptide-MHC Binding Prediction

NetMHCpan MHCflurry MixMHCpred DeepMHCII NetMHCIIpan NetMHC NetMHC NetMHCstabpan

d. Peptide Processing



ProteaSMM PepCleaveCD4 MHC NP II

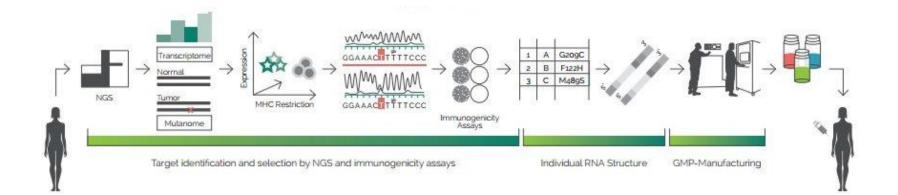
NetChop20S

NetChopCterm

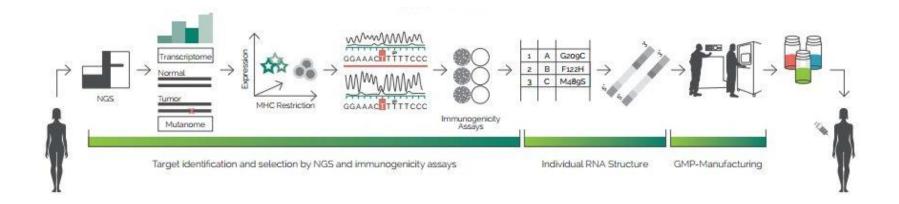
f. T Cell Recognition

PanPep GLIPH/GLIPH2 DeepTCR NetTCR TCRMatch DLpTCR TITAN epiTCR

Fan et al. 2023, Sig Transduct Target Ther

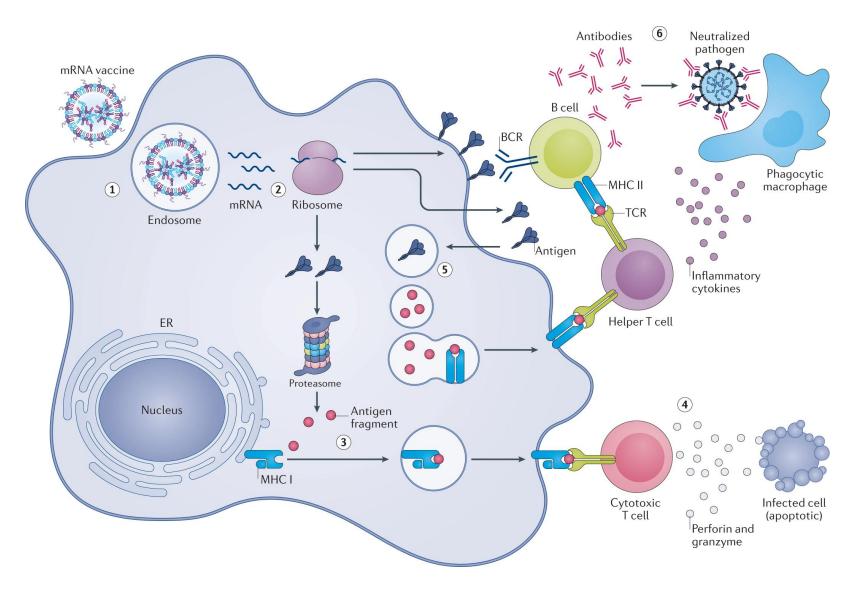

Personalized neoantigen vaccine – CHALLENGES

Challenges with personalized neoantigen vaccines:


• Speed

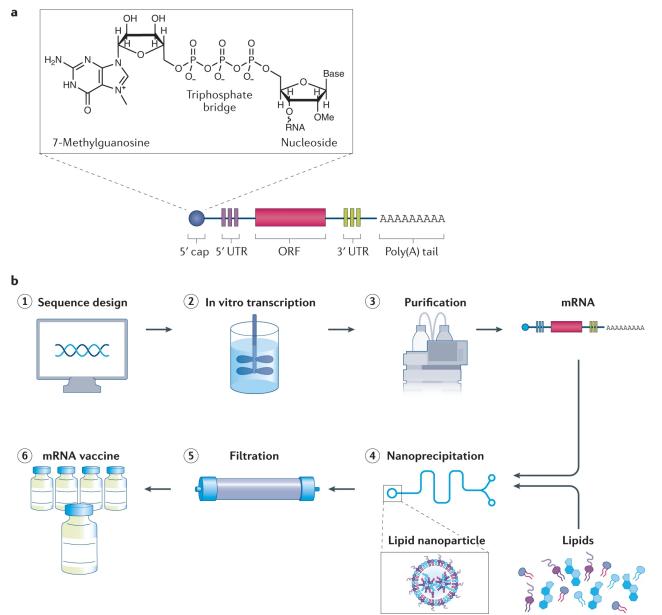
- Metastatic heterogeneity
- TMB (tumor mutational burden)
- Prediction
- HLA dependence

Challenge I - speed

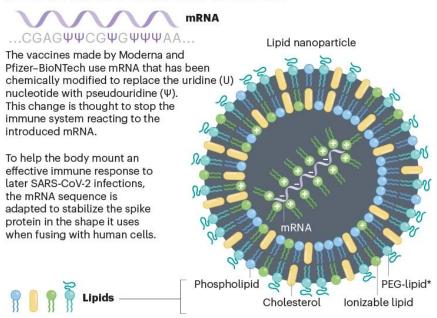

Challenge I - speed

Turn around time from tumor biopsy to GMP-grade production and treatment*:

< 1 month!!!


Mode of action

Challenge of using mRNA vectors

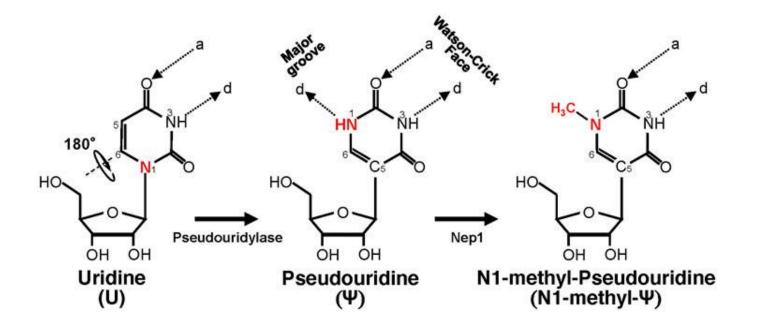

- 1. mRNA stability
- 2. mRNA delivery
- 3. mRNA reactogenicity

Manufacturing mRNA - LNP vaccines

INSIDE AN MRNA COVID VACCINE

COVID-19 vaccines made from messenger RNA use lipid nanoparticles — bubbles of fats — to carry the molecules into cells. The mRNA contains the code for cells to produce the 'spike' protein that the coronavirus SARS-CoV-2 uses to enter cells. Here are key innovations in the design of these vaccines.

The fatty nanoparticle around the mRNA is made of four types of lipid molecule. One of these is 'ionizable': in the vaccine, many of these molecules have a positive charge and cling to negatively charged mRNA, but they lose that charge in the more alkaline conditions of the bloodstream, reducing toxicity in the body.


*Lipid attached to polyethylene glycol

onature

mRNA vaccines allow for a rapid turnover from design to clinical grade production:

- information input does not change biology/chemistry of compound
- stable pharmacokinetics (PK) and pharmacodynamics (PD)

mRNA modification

mRNA modifications reduce the cellular defense mechanisms against exogenous mRNA:

- much higher antigen production inside the cell
- superior antibody responses
- role of mRNA modification on T cell immunity unclear

mRNA vaccine platform

mRNA vaccines allow for a rapid turnover from design to clinical grade production:

- information input does not change biology/chemistry of compound
- stable pharmacokinetics (PK) and pharmacodynamics (PD)
- "needle-to-needle" time down to 28 days!

Personalized neoantigen vaccination via peptide vaccine platform

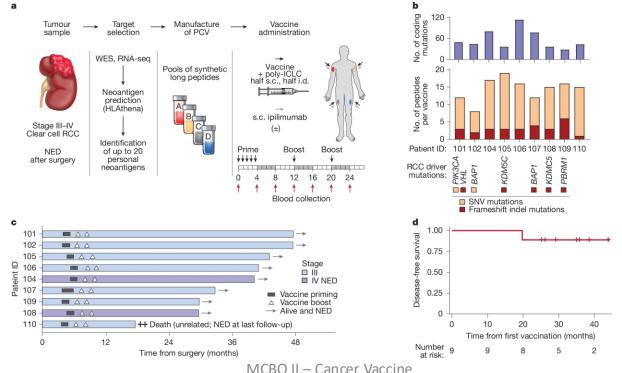
nature

About the journal Y Publish with us Y Explore content ~

nature > articles > article

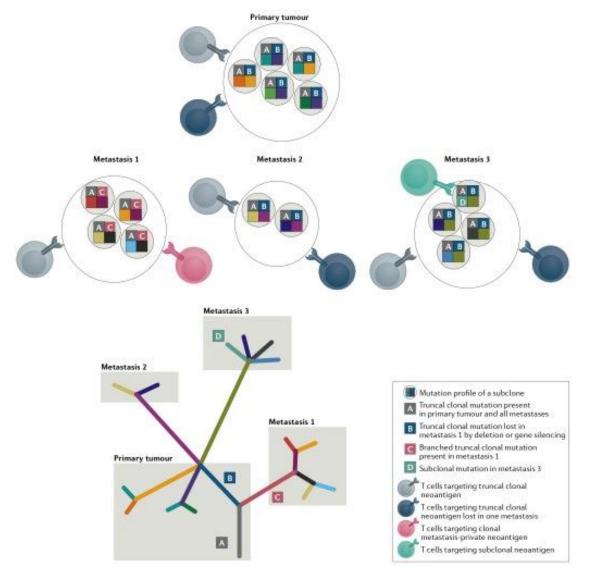
Article | Open access | Published: 05 February 2025

A neoantigen vaccine generates antitumour immunity in renal cell carcinoma

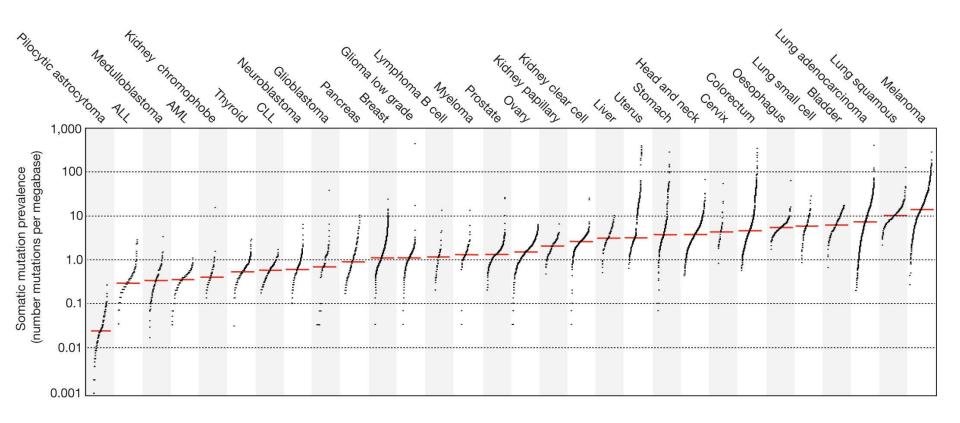

David A. Braun [™], Giorgia Moranzoni, Vipheaviny Chea, Bradley A. McGregor, Eryn Blass, Chloe R. Tu, Allison P. Vanasse, Cleo Forman, Juliet Forman, Alexander B. Afeyan, Nicholas R. Schindler, Yiwen Liu, Shuqiang Li, Jackson Southard, Steven L. Chang, Michelle S. Hirsch, Nicole R. LeBoeuf, Oriol Olive, Ambica Mehndiratta, Haley Greenslade, Keerthi Shetty, Susan Klaeger, Siranush Sarkizova, Christina B. Pedersen, ... Toni K. Choueiri ☑ + Show authors

Nature 639, 474–482 (2025) Cite this article

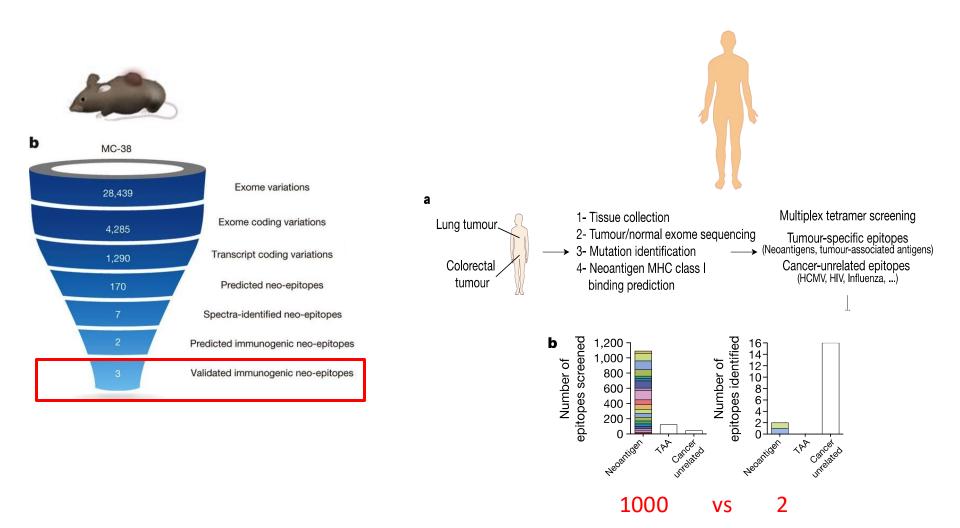
85k Accesses 2 Citations 1644 Altmetric Metrics


а

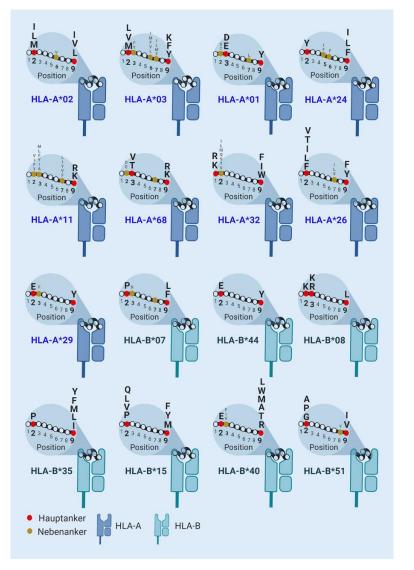
Personalized neoantigen vaccine are NOT an exclusivity for mRNA platforms


Challenge II – heterogeneity of neoantigen landscape

Neoantigens often differ between primary and secondary tumor sites!



Challenge III – dependence on tumor mutational burden (TMB)


mutation frequency varies between tumor types

Challenge IV – computational prediction

Challenge V – HLA dependency

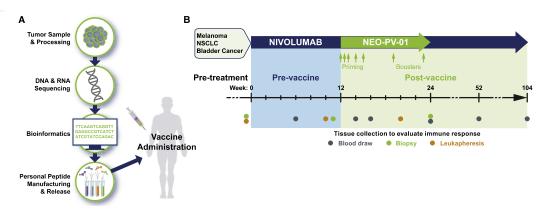
HLA Variability

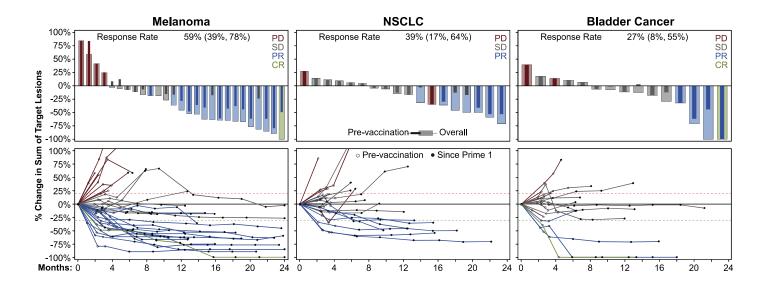
Epitope prediction depends on **common** HLA types

Rammensee and Löffler, 2020, Bundesgesundheitsblatt

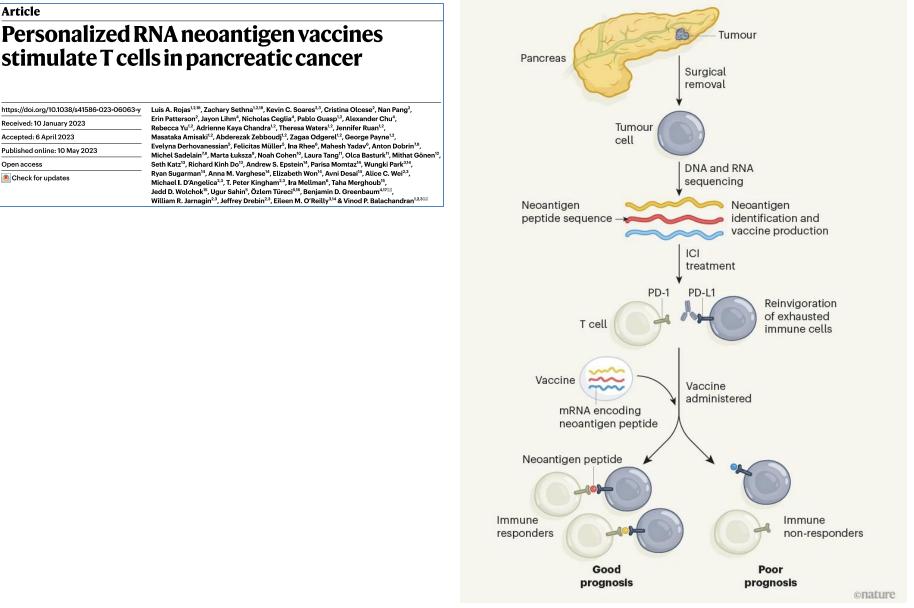
Table 2 | Published clinical trials utilizing neoantigens as targets

Year of publication	Investigator /sponsor	Clinicaltrials.gov identifier, phase	Indication	Platform /treatment	Key results	Ref.
2014	NIH	NCT01174121, 1	Metastatic cholangiocarcinoma	Adoptive transfer of neoantigen-specific (ERBB2IP E805G) CD4* T cells isolated from tumor	Decrease in target lesions with stabilization of disease, reinjection led to tumor regression, single patient report	9
2015	Washington University	NCTOO683670, 1	Stage III or IV melanoma	Intravenous application of neoepitope peptide-loaded DC vaccine	CD8* T cell responses and broadened antigenic breadth as well as clonal diversity	188,189
2016	NIH	NCT01174121, 2	Metastatic colorectal cancer	Adoptive transfer of neoantigen-specific (KRAS G12D) CD8* T cells isolated from tumor	Regression of multiple lung metastases upon infusion of four different T cell clonotypes	8
2017	BioNTech	NCT02035956, 1	Stage III or IV melanoma	Intranodal application of naked mRNA vaccine encoding for multiple neoepitopes	CD8 ⁺ and especially CD4 ⁺ T cell responses against multiple neoantigens, significant reduction of cumulative rate of metastatic events after vaccination	173
2017	Dana-Farber Cancer Institute	NCT01970358,1	Stage III or IV melanoma	Subcutaneous application of peptide vaccine consisting of pooled mutated epitopes	Polyfunctional CD8 ⁺ and especially CD4 ⁺ T cell responses with durable memory response, recognition of autologous tumor, combination with anti-PD-1 therapy beneficial for clinical outcome	172,190
2019	Immatics	NCT02149225, 1	Glioblastoma	Intradermal application of peptide vaccine consisting of shared and mutated epitopes	CD8 ⁺ and CD4 ⁺ T cell responses against multiple shared and mutated epitopes	191
2019	Dana-Farber Cancer Institute	NCT02287428, 1/1b	Glioblastoma	Subcutaneous application of peptide vaccine consisting of pooled mutated epitopes	Polyfunctional CD8 ⁺ and CD4 ⁺ T cell responses with enriched memory phenotype and augmented T cell infiltration to the tumor	192
2020	Dana-Farber Cancer Institute /Neon Therapeutics / BioNTech US	NCT02897765, 1	Advanced melanoma, NSCLC, bladder cancer	Subcutaneous application of peptide vaccine consisting of pooled mutated epitopes combined with PD-1 blockade	Durable CD8 ⁺ and especially CD4 ⁺ T cell responses with cytotoxic potential, observation of epitope spreading upon vaccination	193
2020	NIH/Moderna	NCT03480152, 1	Metastatic gastrointestinal cancer	Intramuscular application of LNP-formulated mRNA vaccine encoding for multiple neoepitopes	CD8 ⁺ and CD4 ⁺ T cell responses against multiple mutated epitopes, small patient group (<i>n</i> =4), no objective clinical response	194
2021	NCT/ University of Heidelberg	NCT02454634, 1	Newly diagnosed glioma	Subcutaneous application of a single IDH1 (R132H) peptide vaccine	Vaccine-induced CD4 ⁺ T cell responses across multiple MHC alleles in over 90% of the patients	174


Cell



Volume 183, Issue 2, 15 October 2020, Pages 347-362.e24


Article A Phase Ib Trial of Personalized Neoantigen Therapy Plus Anti-PD-1 in Patients with Advanced Melanoma, Non-small Cell Lung Cancer, or Bladder Cancer

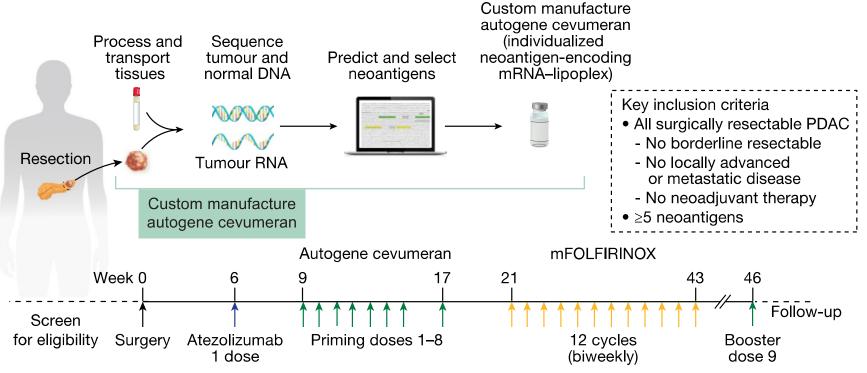
Patrick A. Ott ¹ × 🛱, Siwen Hu-Lieskovan ², Bartosz Chmielowski ², Ramaswamy Govindan ³, Aung Naing ⁴, Nina Bhardwaj ⁵, Kim Margolin ⁶, Mark M. Awad ¹, Matthew D. Hellmann ⁷, Jessica J. Lin ⁸, Terence Friedlander ⁹, Meghan E. Bushway ¹⁰, Kristen N. Balogh ¹⁰, Tracey E. Sciuto ¹⁰, Victoria Kohler ¹⁰, Samantha J. Turnbull ¹⁰, Rana Besada ¹⁰, Riley R. Curran ¹⁰ ... Lakshmi Srinivasan ¹⁰, ¹¹ × 🖾

Example **2**

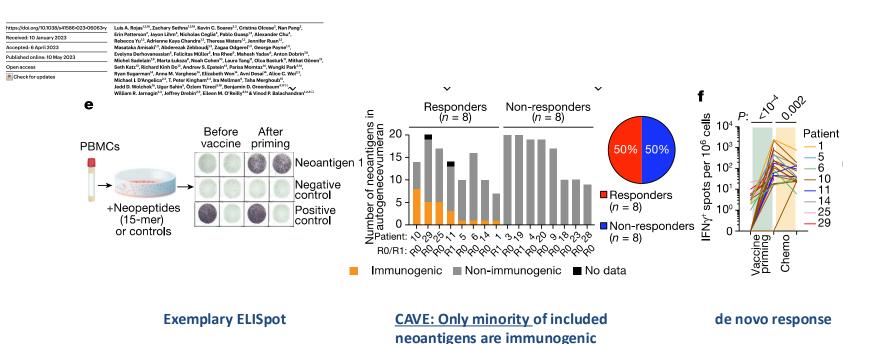
MCBO II – Cancer Vaccine

Example **2**

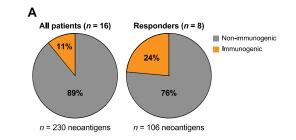
Article Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer


https://doi.org/10.1038/s41586-023-06063-y	Luis A. Rojas ^{1,2,38} , Zachary Sethna ^{1,2,18} , Kevin C. Soares ^{2,3} , Cristina Olcese ² , Nan Pang ² ,		
Received: 10 January 2023	Erin Patterson", Jayon Lihm", Nicholas Ceglia", Pablo Guasp ¹⁻ , Alexander Chu ⁴ , Rebecca Yu ¹ , Adrianne Kaya Chandra ¹ , Theresa Waters ¹ , Jennifer Kunan ³ , Mastataka Amisak ¹⁰ , Albderzak Zebboud ¹¹ , Zagaa Odgerel ¹¹ , George Payne ¹⁰ , Leviyra Derhovenseins ¹¹ , Felicita Wille ¹ , Ita Rifee, Minehs Yadar, Anton Dobrin ¹⁰ , Michel Sadelain ¹¹ , Marta Luksza ¹ , Nach Cohen ¹ , Laura Tang ¹¹ , Olca Basturk ¹¹ , Mithat Göner Seth Katt ² , Richard Kihn Do ¹¹ , Andrew S. Epstein ¹¹ , Parisa Montz ²¹ , Wangi Park ¹¹ ,		
Accepted: 6 April 2023			
Published online: 10 May 2023			
Open access			
Check for updates	Ryan Sugarman ⁴ , Anna M. Varghese ⁴⁴ , Elizabeth Won ⁴⁴ , Avni Desal ⁴⁴ , Alice C. Wei ²³ , Michael L D'Angelica ²³ , T. Peter Kingham ²³ , Ir A Mellman ⁶ , Taha Merghoub ⁴⁵ , Jedd D. Wolchok ⁹ , Ugur Sahin ⁵ , Özlem Türeci ¹⁵⁴⁹ , Benjamin D. Greenbaum ⁴⁷⁵² , William R. Jarnagin ²⁷ , Jeffrey Drebin ²⁵ , Elicen M. O. Reilly ²⁴ & Vinod P. Balachandran ¹²³		

- 16 pancreas cancer patients
- up to 20 neoantigens per vaccine compound
- co-treatment with checkpoint inhibitor anti-PD-L1 (atezolizumab)
- co-treatment with four-drug chemotherapy
- Study endpoints:
 - Neoantigen-specific T cell immunogenicity assay
 - 18 month recurrence-free survival


Article **Personalized RNA neoantigen vaccines** stimulate T cells in pancreatic cancer

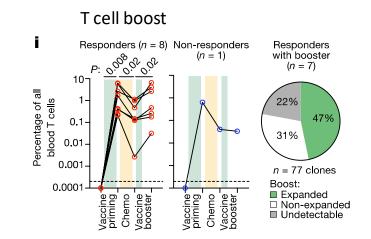
https://doi.org/10.1038/s41586-023-06063-y	Luis A. Rojas ¹²⁴ , Zachary Sethna ¹²⁴ , Kevin G. Soares ²³ , Oristina Olcese ³ , Nap Rang ² , Erin Patterson ⁷ , Jayon Lihm ⁴ , Nicholas Ceglia ⁵ , Pablo Guasp ¹⁷ , Alexander Chu ⁴ , Rebecca Tu ² , Adrienne Kaya Chandra ¹¹ , Theresa Waters ²¹ , Jennifer Ruan ¹⁷ , Mastata Amisaki ¹⁷ , Abderezak Zabboud ¹ , Zapaa Odgerel ¹⁷ , George Payne ¹⁰ , Vetvina Berhomassia ¹⁴ , Felicita Killer ¹ , Ina Rhee ⁴ , Match Tadori, ²⁴ , Anton Dobrin ¹³ , Michel Sadolai ¹⁰ , ³⁴ Marta Luksza ³ , Noah Cohen ¹⁹ , Luara Tang ² , Olca Basturk ¹⁷ , Mithat Gö Seth Kat ¹² , Richard Kinh D ¹⁰ , Andrew E, Spatel ¹⁰ , Paris Montaz ¹⁷ , WangKi Park ¹³ , Ryan Sugarman ¹ , Anna N. Varghese ¹⁰ , Elizabeth Won ¹ , Arui Desal ¹¹ , Alice C. Wei ¹² , Michael L D'Angelica ¹² , There Kinghan ¹⁷ , Jan Bergoub ¹⁰ , Jedd D. Wolchek ¹⁴ , Ugur Sahin ¹ , Özlem Türce ¹³⁶ , Benjamin D. Greenbaun ¹⁰⁷¹ ,
Received: 10 January 2023	
Accepted: 6 April 2023	
Published online: 10 May 2023	
Open access	
Check for updates	



Article Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer

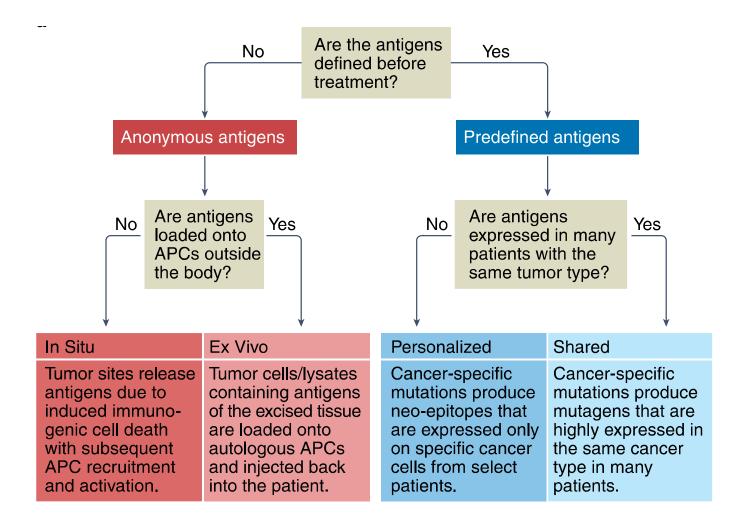
50% of patients showed measurable immune responses against neoantigens

But only minority of all neoantigens responded to!

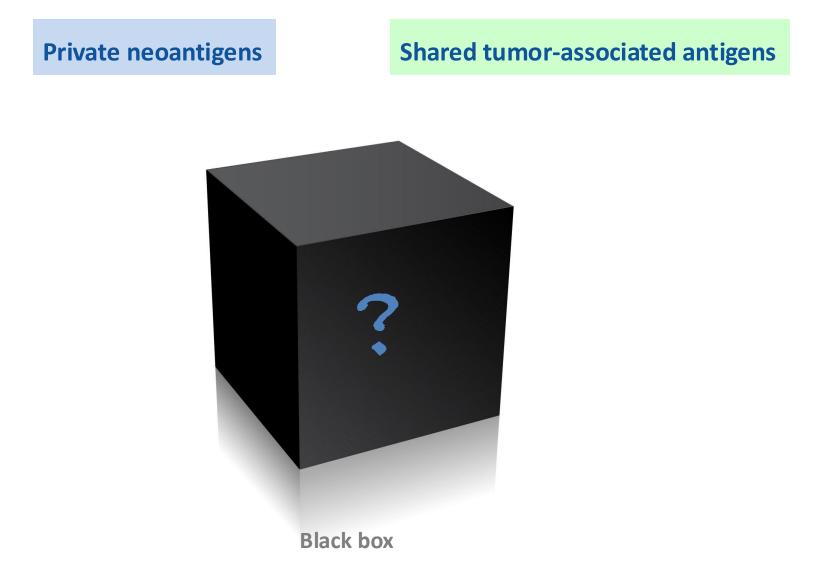

Example 2

Article Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer

https://doi.org/10.1038	/s41586-023-06063-y
Received: 10 January 2	2023
Accepted: 6 April 202	3
Published online: 10 N	lay 2023
Open access	
Check for updates	


Luis A. Rojas¹⁻²⁸, Zachary Sethna¹⁻²⁸, Kevin C. Soares²¹, Cristina Olcese³, Nan Pang², Erin Patteson³, Jaon Lihm³, Nicholas Ceglia¹, Pablo Guago¹⁴, Alcander Chu¹, Rebecca Yu¹³, Adrienne Kaya Chandra¹⁰, Theresa Waters¹³, Jennifer Ruan¹³, Restant A. Amisak¹¹, Abdrenzak Zebboud¹, Zagaa Odgerel¹², Jeoerge Payne¹³, Evelyna Derhovensein¹, Feilcher Müller¹, Ina Rhee¹, Match Yato, Anton Dobrin¹³, Michel Sadelain¹³, Marta Luksza¹, Noah Cohem⁵, Laura Tang¹, Olca Basturk¹, Mithat Gönen¹ Seth Katt²⁷, Richard Kihn Do¹³, Antore S. Epstein¹⁴, Paris Monta²², Wongki Park¹³, Ryan Sugarman¹⁴, Anna H. Varghese¹⁵, Elizabeth Won¹⁴, Anto Desai¹⁴, Allee C. Wel¹³, Michel L. D'Anguertale¹³, Jefret Gy Tenfan¹³, Ziaha Meng¹⁵, Jefret Monta¹²⁵, Jedd D. Wolchok¹⁶, ¹guer Sahin¹, Želem Türce¹⁵⁹, Benjamin D. Greenbaum¹⁰⁷²⁵¹,

Boost effect of mRNA vaccines after chemotherapy



Important: maintained T cell functionality under chemotherapy (up to 2 years)!

Tumor antigens – quo vadis?

Tumor antigens – anything else?

Tumor antigens – anything else?

Private neoantigens

Shared tumor-associated antigens

The road ahead

Shared neoantigens

- 1. driver mutations (e.g. KRAS, p53)
- 2. NON-coding regions
- 3. splicing variants
- 4. cryptic peptides

Example **3**

nature medicine

Explore content v About the journal v Publish with us v

nature > nature medicine > articles > article

Article Open access Published: 09 January 2024

Lymph-node-targeted, mKRAS-specific amphiphile vaccine in pancreatic and colorectal cancer: the phase 1 AMPLIFY-201 trial

Shubham Pant ^{ID}, Zev A. Wainberg, Colin D. Weekes, Muhammad Furqan, Pashtoon M. Kasi, Craig E. Devoe, Alexis D. Leal, Vincent Chung, Olca Basturk, Haley VanWyk, Amy M. Tavares, Lochana M. Seenappa, James R. Perry, Thian Kheoh, Lisa K. McNeil, Esther Welkowsky, Peter C. DeMuth, Christopher M. Haqq ^{ID} & Eileen M. O'Reilly ^{ID}

Nature Medicine 30, 531-542 (2024) Cite this article

9

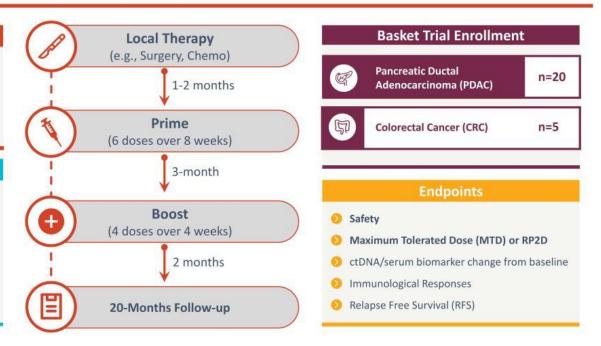
nature medicine

Article The provided and the provided an

AMPLIFY-201 Study Overview

Phase 1 dose-ranging study to assess safety and efficacy of ELI-002 2P as adjuvant treatment in patients who completed standard therapy and have molecular disease

CLINICAL PROGRAM OVERVIEW: NCT04853017


Key Criteria

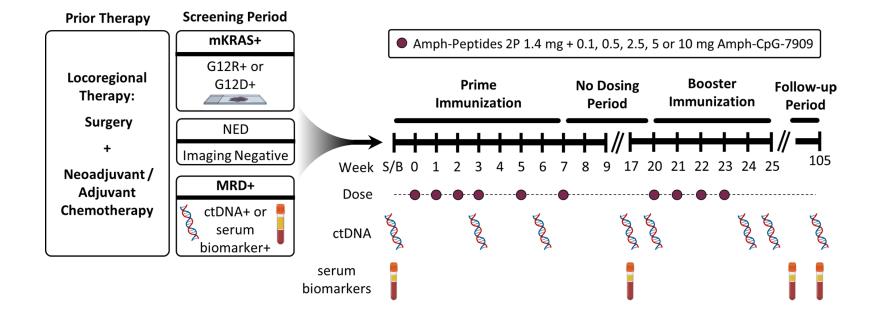
- ✓ mKRAS G12D / R − aligned to 2 peptide formulation
- No metastatic disease after locoregional treatment
- ✓ No radiographic evidence of disease (NED)
- High risk of relapse (MRD+ ctDNA/serum biomarkers)

Baseline Characteristics

25 patients enrolled across 5 dose cohorts, 23 evaluable at database cutoff (4/25/2023)

- Advanced: 68% had stage III or oligometastatic resected stage IV disease
- Pre-treated: All received prior chemo and surgery,
 28% had prior radiation

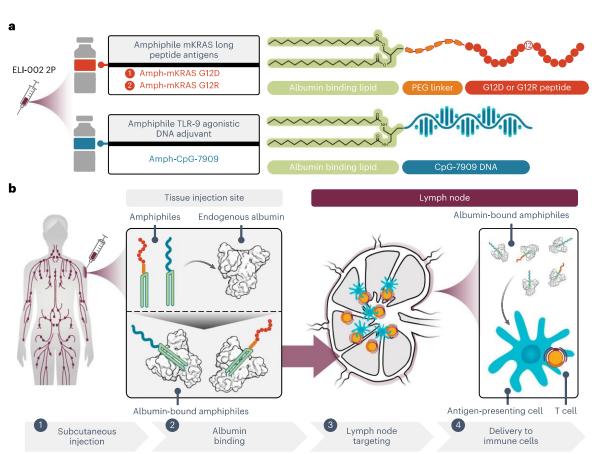
9


https://doi.org/10.1038/s41591-023-02760-3

nature medicine

Article

Lymph-node-targeted, mKRAS-specific amphiphile vaccine in pancreatic and colorectal cancer: the phase 1 AMPLIFY-201 trial

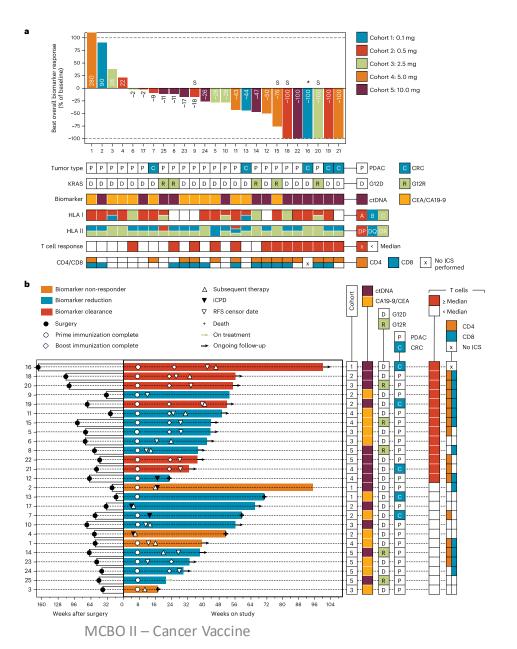

https://doi.org/10.1038/s41591-023-02760-3

Example **3**

nature medicine

Article

Lymph-node-targeted, mKRAS-specific amphiphile vaccine in pancreatic and colorectal cancer: the phase 1 AMPLIFY-201 trial

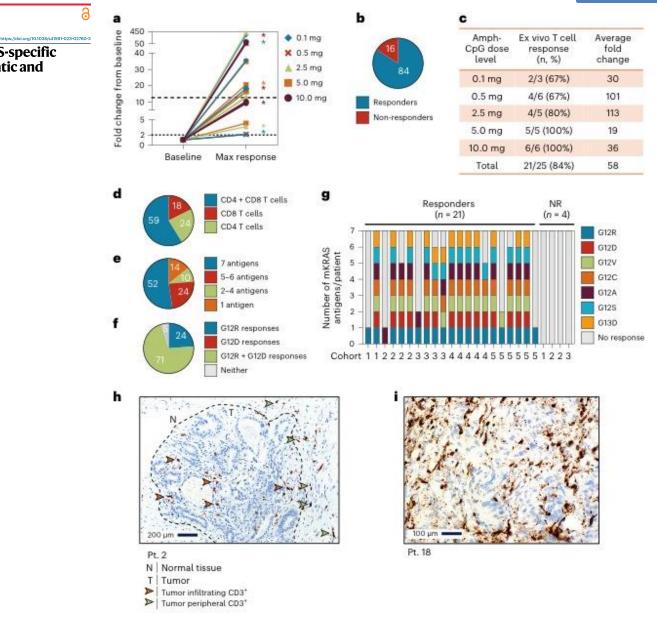

9

https://doi.org/10.1038/s41591-023-02760-3

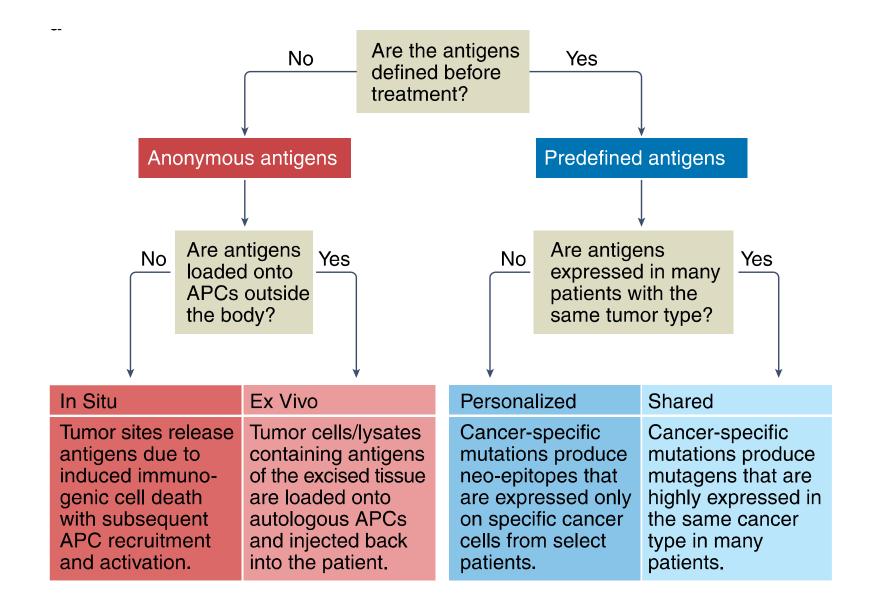
nature medicine

Article

Lymph-node-targeted, mKRAS-specific amphiphile vaccine in pancreatic and colorectal cancer: the phase 1 AMPLIFY-201 trial

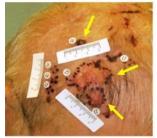


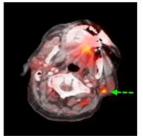
Example **3**

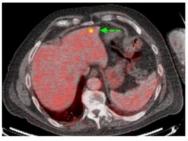

nature medicine

Article

Lymph-node-targeted, mKRAS-specific amphiphile vaccine in pancreatic and colorectal cancer: the phase 1 AMPLIFY-201 trial

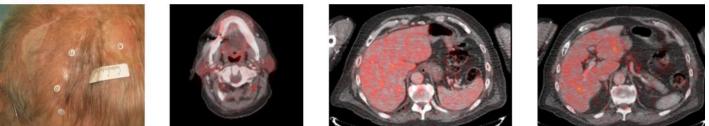



Tumor antigens – quo vadis?



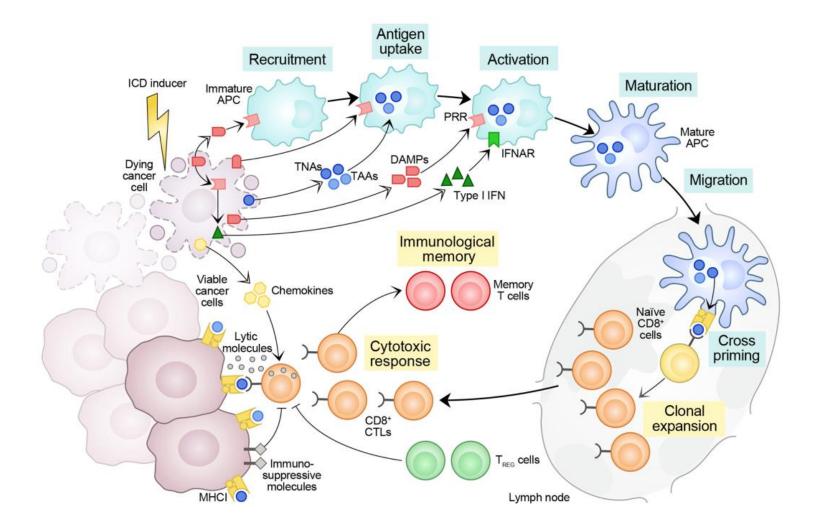
Vaccination THROUGH Therapy

local therapy of melanoma skin cancer with <u>oncolytic virotherapy</u> Baseline



3 months

7 months



=> Effect on remote metastases by virus induced immune activation

Cancer in situ vaccination

antigens known/predicted antigen "agnostic" (b) In situ vaccination (a) Conventional vaccination Adjuvant Identified tumor antigen(s) Adjuvant Intratumoral injection Systemic injection 000 Exploit all relevant tumor antigens available in a tumor Tef Activate and expand effector T cells (Teff) Activate and expand effector T cells (Teff) that recognize only the vaccine antigen(s) that recognize all relevant tumor antigens

Cell death modality impacts immunogenicity recognition

Questions???