

Stromal microenvironment in tumor development & progression

Natalie Sampson

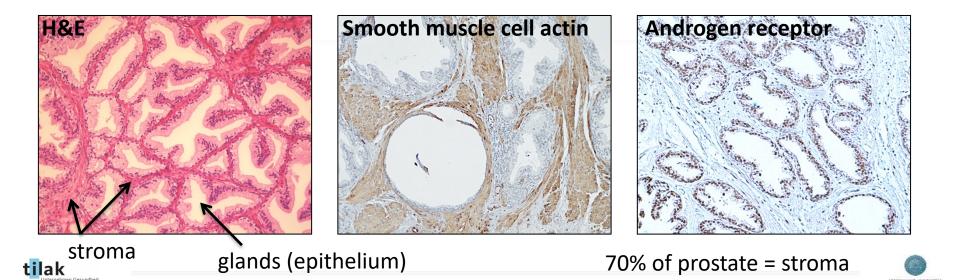
Department of Urology, Medical University Innsbruck Division of Experimental Urology

14th March 2024

Overview

1. Background

- Stromal tissue: definition, composition, function
- Molecular/cellular changes in tumor microenvironment
- Cancer-associated fibroblasts as major tumor-modulating entities in tumor microenvironment
- 2. Paper presentation
- 3. Take home message



Definition:

- the supportive framework or matrix of a cell or organ
- comes from Greek meaning **bed covering or mattress**

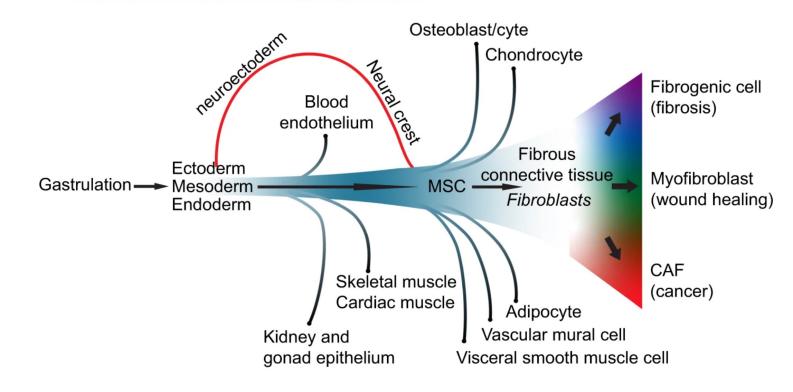
Stroma: composition & origin

• stroma derives from embyronic mesenchyme

cellular component:

nerves blood vessels immune cells fibroblasts smooth muscle cells (SMCs)

non-cellular component:


connective tissue extracellular matrix (ECM)

Stromal cell origins

From: Identification, discrimination and heterogeneity of fibroblasts

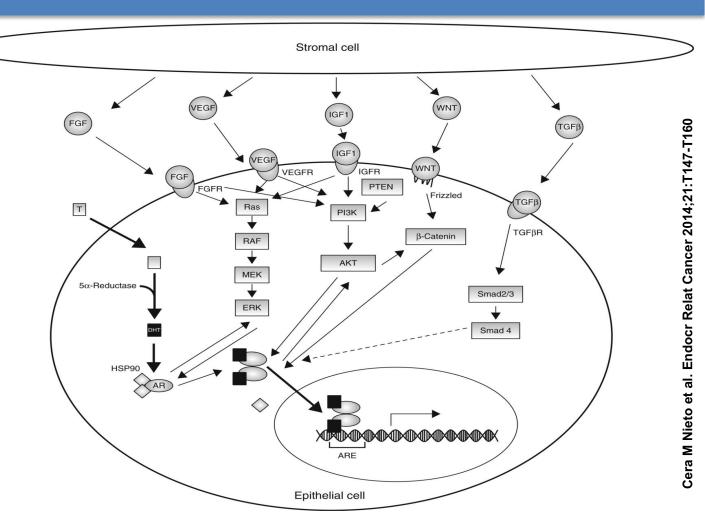
Other cell types originating from the mesoderm are also depicted. MSC are shown as a transitory cell type that yield fibroblasts. In fibrosis, wound healing and cancer, fibroblasts likely progress further to become fibrogenic cells, myofibroblasts and CAFs, respectively.

tilak

Stroma: function

provides structural support/rigidity to organ and tissue (connective tissue)

- 1. key regulator of tissue homeostasis & organ development:
 - reciprocal interactions between epithelium and stroma via paracrine-acting signaling molecules (growth factors and cytokines)
 - signaling cascades regulate epithelial and stromal cell proliferation, differentiation, ECM production, angiogenesis (i.e. key processes that contribute to cancer)



Stromal – epithelial interactions

EXAMPLE: AR-regulated stromal–epithelial signaling pathways in prostate cancer

UROLOGIE

1863: Rudolph Virchow observed leukocytes in stroma of neoplastic tissue. He hypothesized that malignancy originated at sites of chronic inflammation

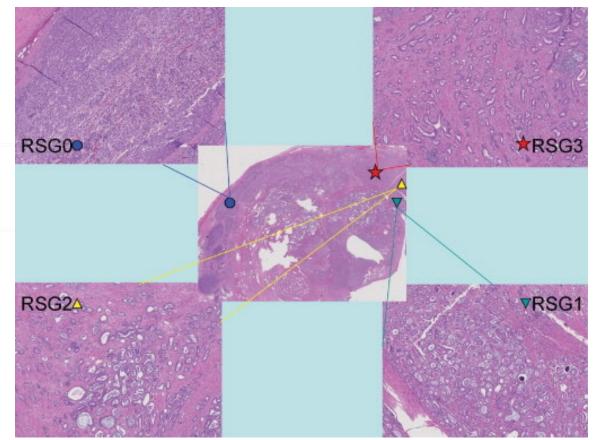
1889: Paget noted that some tumor cells (the "seed") grow preferentially in the **microenvironment** of selected organs (the "soil") and that metastases only result when the appropriate seed is implanted in its suitable soil

1924: Max Borst wrote "with regards to the question of whether the epithelium or the connective tissue has the leading role in carcinogenesis, we think that asking "*either/or*" is bad."

UROLOGIE Universitätsklinik Innsbruck

Table 1. Tumorigenicity of Cancer Cells Inoculated into NormalMice as Cell Suspensions or Fragments of Solid Tumors

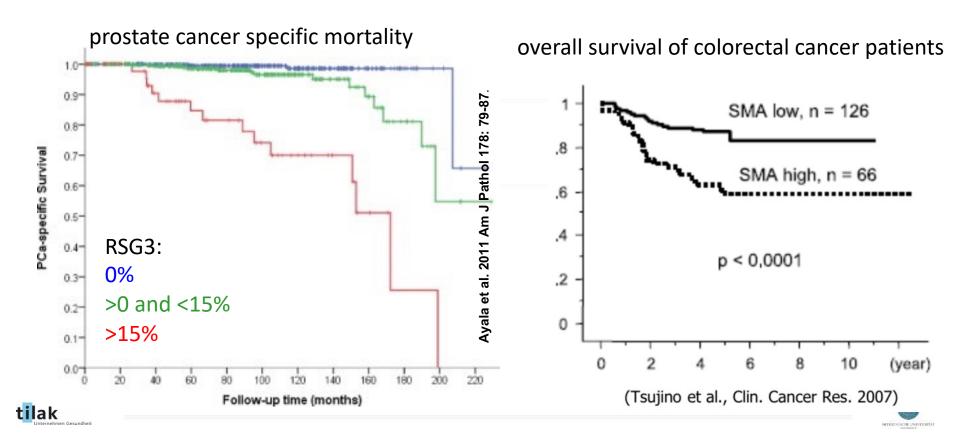
Tumor stroma greatly enhances tumorigenicity	Tumor	Inoculum*	Tumor cells	Tumor outgrowth [‡]
			× 10°	
	1591-PRO	Suspension	50	0/75
Inoculated cancer cells embedded		Suspension	10	1/8
in tumor stroma are 10 – 100 fold		Fragments	15	11/15
more tumorigenic than stroma-free		Fragments	3	10/12
suspensions of cancer cells		Fragments	1.5	8/125
	6134A-PRO	Suspension	50	0/5
Tumor-adjacent stroma termed "reactive" or "desmoplastic" stroma		Suspension	10	0/16
		Fragments	15	9/11
		Fragments	3	8/12
		Fragments	1.5	7/12

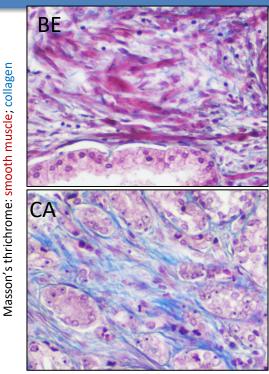


Reactive stroma grading

4 different reactive stromal grades (RSGs) depending on the percentage of area of reactive stroma (RS) in the tumor:

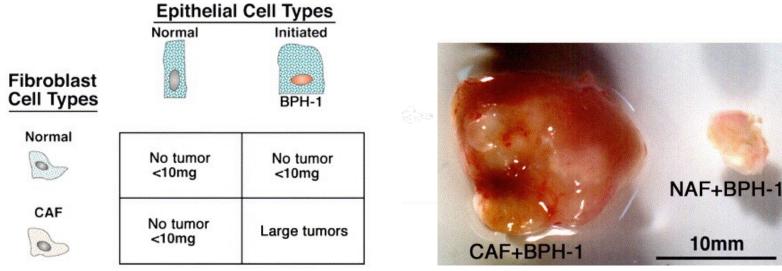
RSG 0: ≤5% RSG 1: 6%– 15% RSG 2: 16%–50% RSG 3: at least a 1:1 ratio between reactive stroma and epithelial cancer


not routinely used in clinical diagnostics tilak


stroma-enriched tumors are associated with poor prognosis

Tumor microenvironment

- reactive stroma exhibits histo-morphological hallmarks:
 - presence of carcinoma-associated fibroblasts
 - (CAFs, activated phenotype)
 - increased deposition of altered ECM
 - increased capillary density (aberrant structure/
 - leaky vessels)
 - immune cell infiltration

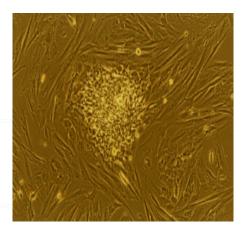


- changes apparent in pre-neoplastic lesions (early event in tumorigenesis)
- tumor-associated stroma changes (co-evolves) during tumor progression

each required for tumor development

Olumi et al. 1999 Cancer Res 59: 5002

> Tumor-promoting capacity of stroma predominantly mediated by CAFs



- persistently activated fibroblast-like cells in stroma adjacent to the tumor and at invasive front (spindle-like morphology)
- CAF phenotype proven by ability to promote tumorigenesis of initiated but non-tumorigenic epithelial cells
- Isolated from tumor biopsies via
 - (i) outgrowth from tissue slices in media containing serum
 - (ii) tissue digestion with collagenase and differential centrifugation/FACS

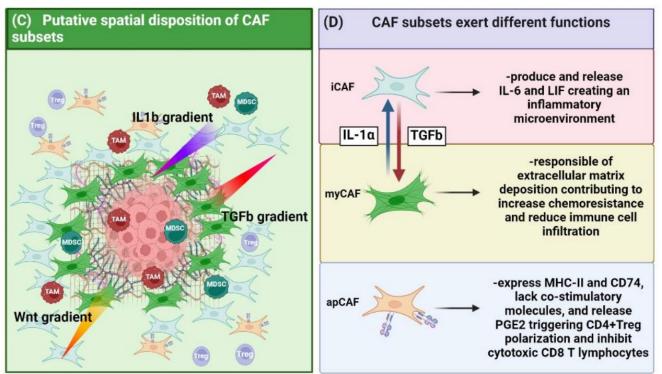
CAFs: molecular hallmarks

- exhibit widespread DNA hypomethylation
- no single molecular marker to define CAFs
- common markers include:

fibroblast activation protein (FAP)platelet derivalpha smooth muscle actin (SMA)Tenascin Cfibroblast specific protein (FSP1)podoplaninCD90/Thy1✓ caveolin-1

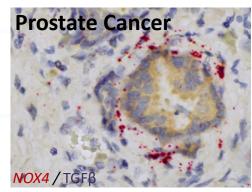
platelet derived growth factor receptors Tenascin C podoplanin

- not all CAFs express these markers (different CAF subtypes) and these markers are not necessarily CAF-specific
- CAF subtypes also exhibit functional differences



CAF heterogeneity

- "CAF" represents a heterogeneous mix of functionally-distinct cell types/cell states
- Cytokine/expression profiles may characterize different CAFs subtypes (tissue-specific)
- CAFs can promote or inhibit tumor progression:
 - podoplanin⁺ CAFs are prognostic indicator in lung adenocarcinoma, squamous cell carcinoma and breast cancer
 - FAP⁺ CAFs associated with poor outcome in colon cancer
 - CD90 (Thy-1)⁺ CAFs more tumor-promoting in prostate cancer
 - depleting FAP⁺ CAFs promoted tumor progression in mouse PDAC model
 - inhibiting Shh signaling, depleted stromal content but promoted tumor aggressiveness in mouse PDAC model
- Different subtypes of CAF exist, which are functionally/molecularly distinct heterogeneity may reflect different activation stimuli (e.g. IL6 vs. TGFβ) and/or CAF cellular origin (i.e. local resident fibroblast vs.
 tila infiltrated BM-derived cell)

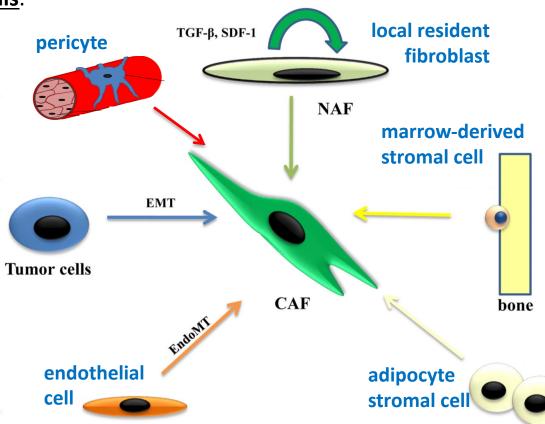


Prevailing CAF substates

Papait et al. 2022 Cancers 14: 3570

tilak

Sampson et al. 2018. Int J Cancer


tilak

CAF cellular origins

CAFs may not only derive from <u>activation of local resident fibroblasts</u> but also from chemokine-attracted <u>infiltrating cells</u>:

Fibrocyte: circulating cells from hematopoietic lineage with proinflammatory properties of macrophages as well as tissue remodeling capacity of fibroblasts

Desmoplastic stem cell? possible origins include MSCs, HSCs, endothelial progenitors and cancer stem cell itself via EMT

CAF tumor-promoting actions

Direct mechanisms

- secrete paracrine-acting soluble factors e.g. IL-6
- direct cell-cell contacts with tumor cells

Indirect mechanisms

- ECM remodeling
- angiogenesis
- modulate immune response
- metabolic reprogramming

Therapy resistance

- reduced chemotherapeutic efficacy
- endocrine/target resistance

CAFs target for novel approach of stromal-targeted anti-cancer therapies?

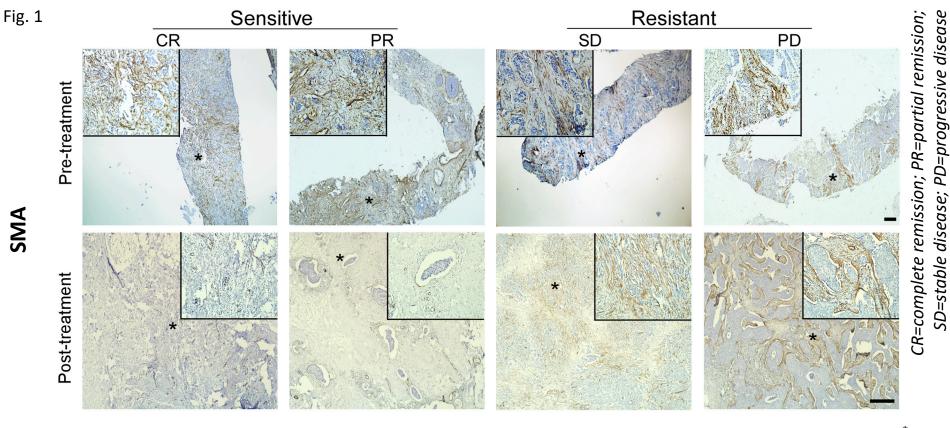
ARTICLE

CD10⁺GPR77⁺ Cancer-Associated Fibroblasts Promote Cancer Formation and Chemoresistance by Sustaining Cancer Stemness

Shicheng Su⁷, Jianing Chen⁷, Herui Yao⁷, Jiang Liu, Shubin Yu, Liyan Lao, Minghui Wang, Manli Luo, Yue Xing, Fei Chen, Di Huang, Jinghua Zhao, Linbin Yang, Dan Liao, Fengxi Su, Mengfeng Li, Qiang Liu, Erwei Song⁸.

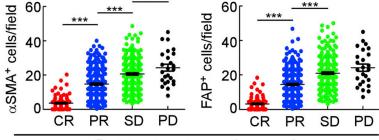
⁷ These authors contributed equally

⁸ Lead Contact

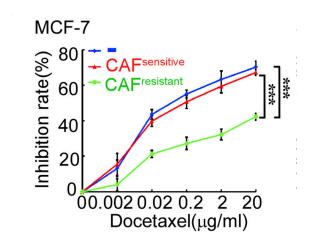


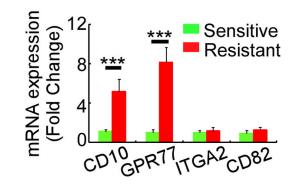
- Cancer stem cells (CSCs): population of highly tumorigenic & chemo-resistant cells
- CSC maintenance requires supportive niche

⇒ Identify/study the subpopulation of CAFs underlying breast cancer stemness/chemoresistance



<u>BEFORE treatment</u>: frequency of SMA⁺ CAFs not different among patient groups <u>AFTER treatment</u>: more SMA⁺ CAFs in tissues of resistant patients compared to sensitive/responsive patients

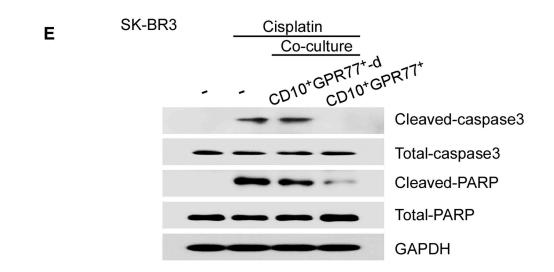

 \Rightarrow Do heterogeneous CAFs contribute to chemoresistance?

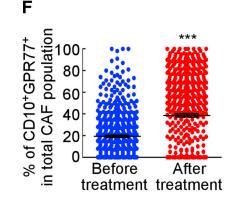


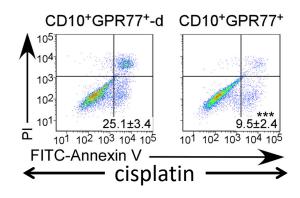
Post-treatment operative samples

- isolated fibroblasts from chemoresistant/sensitive BrCa biopsies B4 chemotherapy
- co-culture with BrCa cell lines (MCF-7 and SK-BR3)
- challenged cells with chemotherapeutic drugs
- \Rightarrow functionally distinct CAF subtypes in resistant vs. sensitive BrCA?

- microarrays cell surface markers
- abundance of CD10⁺GPR77⁺ CAFs associated with decreased survival

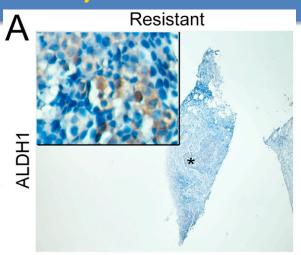

(CD10 = MME used in diagnosis of ALL)


➤A CAF subset with high CD10 and GPR77 expression correlates with chemoresistance and poor survival in breast and lung cancer patients

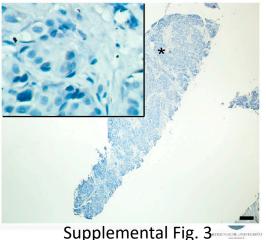


• Tumor cell survival enhanced when co-cultured with CD10⁺GPR77⁺ CAFs:

Proportion of CD10⁺GPR77⁺ CAFs increased after neoadjuvant chemotherapy

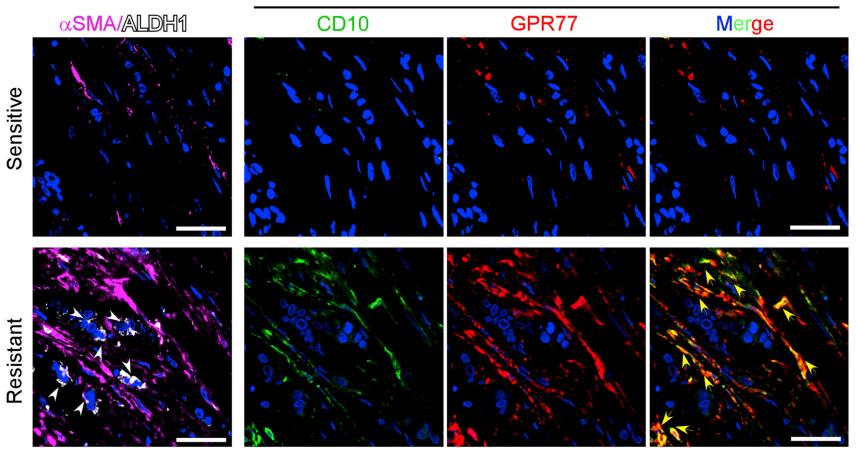

G

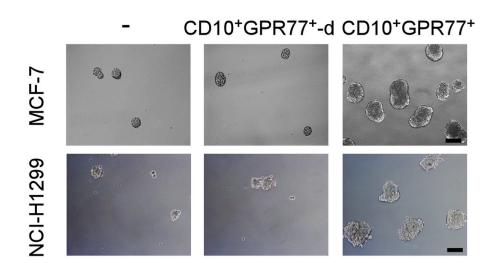
CD10⁺GPR77⁺ CAFs show greater resistance to chemotherapeutics *in vitro* (*ie CAFs are intrinsically chemoresistant*)



Cancer Stem Cells (CSCs)

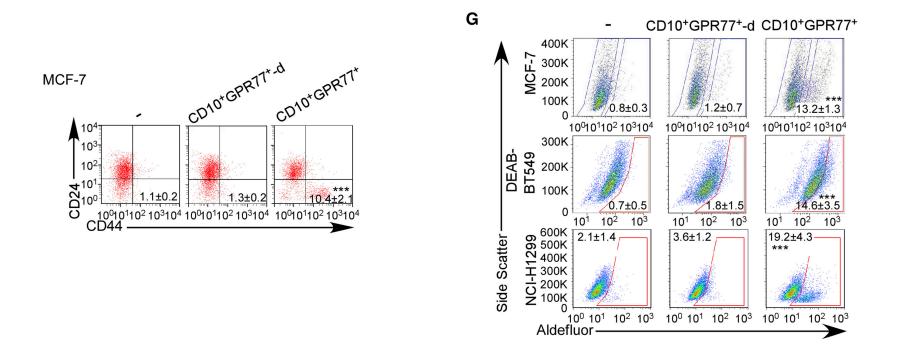
- highly-tumorigenic & chemo-resistant cells
- CSC markers typically non-specific/unclear (ALDH1)
- like normal stem cells, maintenance of CSCs requires supportive niche
- fibroblasts are main components of CSC niches
- CAFs isolated from only a fraction of BrCa patients could enrich CSCs
- heterogeneous capacity of CAFs in supporting CSCs?
- could CD10+GPR77+ CAF subtype be supporting CSCs and thus lead to chemoresistance?
- proportion of ALDH1⁺ tumor cells correlates with chemoresistance


Sensitive



A Post-treatment

CD10/GPR77


• CD10⁺GPR77⁺ CAFs surround ALDH1⁺ CSCs

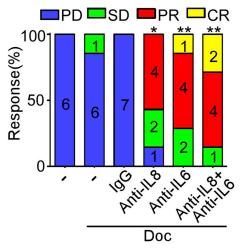
F - F ------

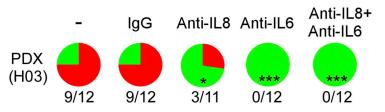
 more mammospheres formed when tumor cell lines co-cultured with CD10⁺GPR77⁺ CAFs

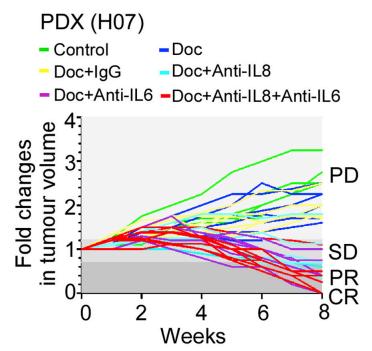
E

 proportion of CD24⁺CD44⁺ and ALDH1⁺ breast cancer CSCs increased upon co-culture with CD10⁺GPR77⁺ CAFs

CD10⁺GPR77⁺ CAFs constitute a supporting niche for CSCs



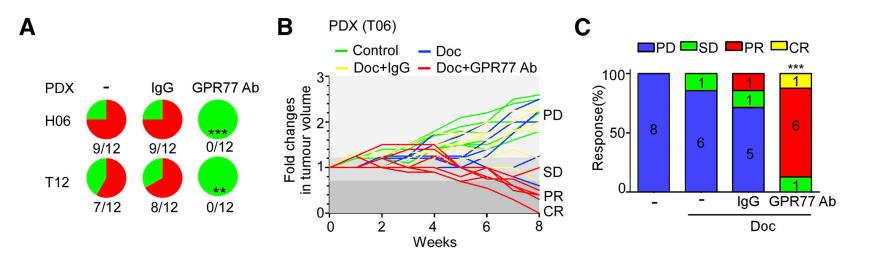

A CD10⁺GPR77⁺-d CD10⁺GPR77⁺ CD10⁺GPR77⁺


1:GRO 2:IL-6 3:IL-8 4:IL-10 5:M-CSF

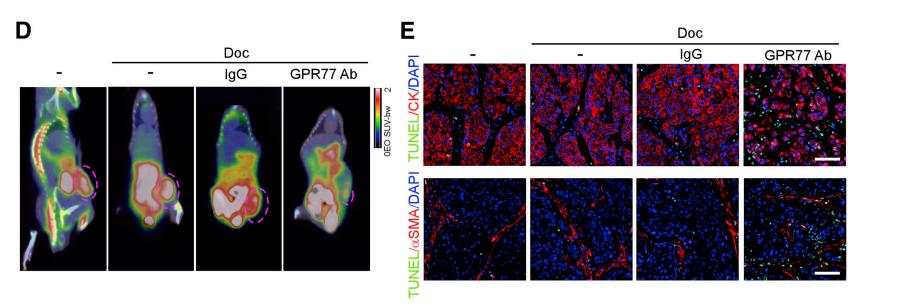
- implanted breast tumor samples containing high proportions of CD10⁺GPR77⁺ CAFs (>30%) into nude mice and administered IL6 and/or IL8 neutralizing antibodies:
 - IL8 Ab retarded PDX establishment
 - IL6 Ab alone or in combination with
 IL8 Ab completely blocked PDX growth

- combined IL8/docetaxel treatment improved IL8 treatment response
- combined IL6/docetaxel treatment almost eradicated PDXs

CD10⁺GPR77⁺ CAFs induce CSC enrichment and chemoresistance by secreting IL-6 and IL-8


Functional analyses: GPR77 is required for IL8 secretion by CD10⁺GPR77⁺ CAFs

Do CD10⁺GPR77⁺ CAFs represent a stable, self-sustained population and can they be dynamically reversed to the CAF "ground state" (e.g. to the CD10⁻ GPR77⁻ population)?



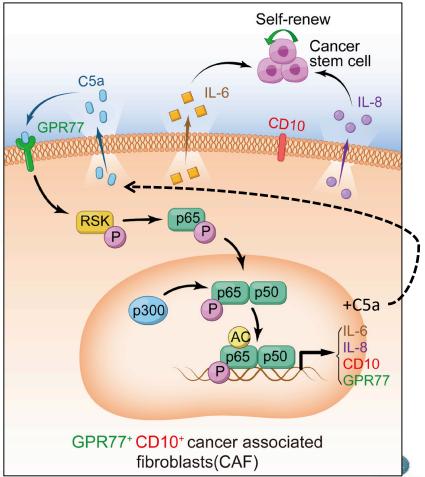
• Therapeutic potential of anti-GPR77 neutralizing Ab?

anti-GPR77 Ab almost abolished PDX establishment

blocking GPR77 reverses chemoresistance in breast cancer with high infiltration of CD10⁺GPR77⁺ CAFs

- Combined treatment with anti-GPR77 Ab enhanced apoptosis of both tumor cells and CAFs
- reduced infiltration of CD10+GPR77+ CAFs and proportion of ALDH1+ breast CSCs in PDXs

Treatment of breast cancer PDXs with anti-GPR77 inhibits tumorigenesis and enhances chemotherapeutic effects



- CD10/GPR77 co-expression defines a human CAF subset that provides a niche for CSCs and protects them from chemotherapy-induced cell death
- CD10⁺GPR77⁺ CAFs themselves are also chemo-resistant
- niches formed by CD10+GPR77+ CAFs provide constant source of IL-6 and IL-8 for the CSCs due to persistent NF-κB signaling maintained by p65 phosphorylation/acetylation
- GPR77 (a C5a receptor) plays a crucial functional role in maintaining p65 posttranslational modification and sustained NF-κB signaling (autocrine C5a-NF-κB loop)

- CSCs difficult to target (no defined marker and may be replenished by non-CSCs in presence of supporting niche
- targeting the supportive niche alternative option?
- proof-of-principle: GPR77 neutralizing Ab, eradicates CD10⁺GPR77⁺ CAFs & CSCs, retards tumor formation and reverses chemoresistance in PDX mouse models

TAKE HOME MESSAGES

- Stromal microenvironment is dynamic and integral part of solid tumors that plays key role in tumor development/progression, immune suppression, therapy resistance and clinical outcome
- Tumor stroma not just an innocent bystander but an active driver of tumor progression
- Altered paracrine signaling by CAFs is major effector mechanism underlying tumorpromoting actions of the tumor-associated stroma (effects on tumor cells, ECM remodeling, angiogenesis and immune suppression)
- Restoring paracrine signaling networks between stromal components/eradicating specific CAF subpopulations may represent anti-cancer therapeutic strategy

