Tumor Antigens and Cancer Vaccines

MCBO Core Lecture II
Guido Wollmann

Division of Virology

pathogen

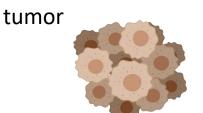
tumor

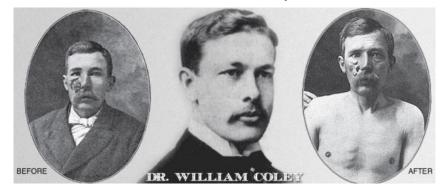
pathogen

Edward Jenner

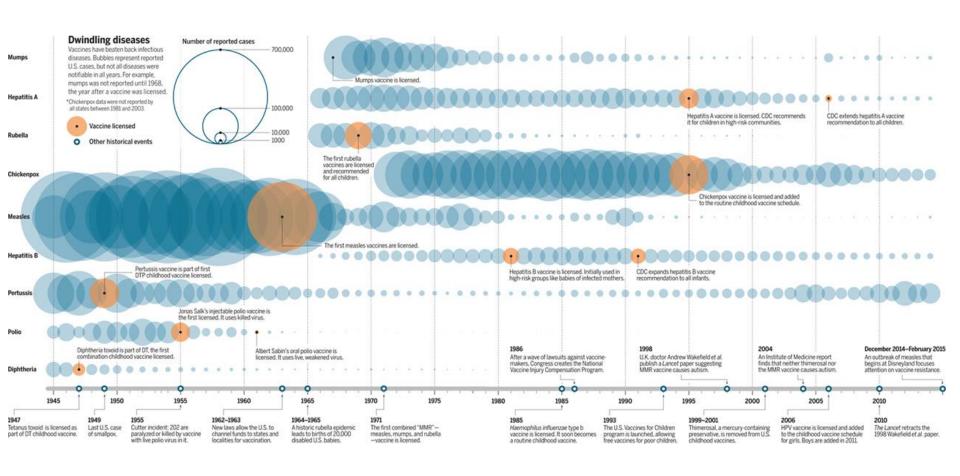
1796

pathogen

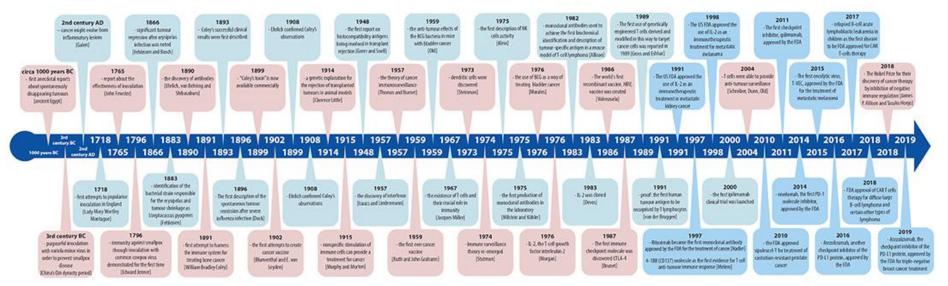


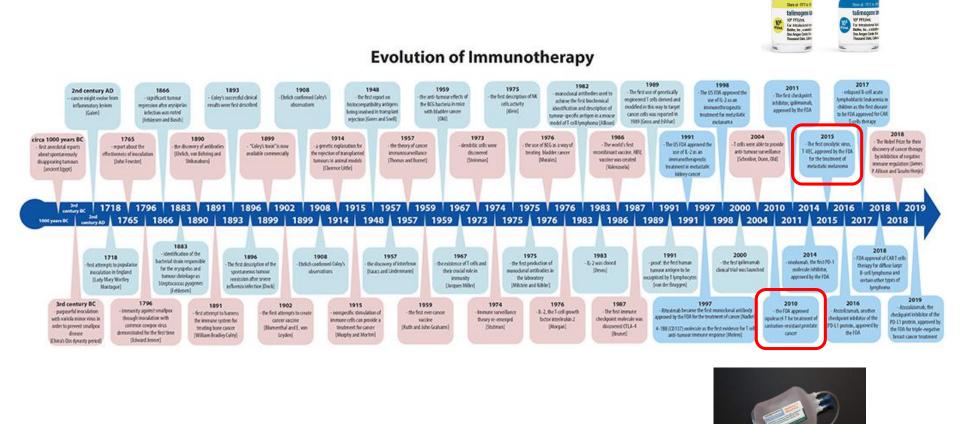


Edward Jenner



William Coley


1796


Century of vaccines!

highly successful development to fight pathogen disease burden

Evolution of Immunotherapy

challenge to apply vaccines as tumor immunotherapies

pathogen vaccine

tumor vaccine

pathogen vaccine

tumor vaccine

A pathogen is a foreign invader. The invader or parts of it can be directly used. A tumor is part of oneself.

The tumor cannot be directly used

pathogen vaccine

tumor vaccine

A pathogen is a foreign invader.

The invader or parts of it can be directly used.

vaccine is based on MATERIAL

A tumor is part of oneself.

The tumor cannot be directly used

vaccine is based on INFORMATION

pathogen vaccine

tumor vaccine

A pathogen is a foreign invader.

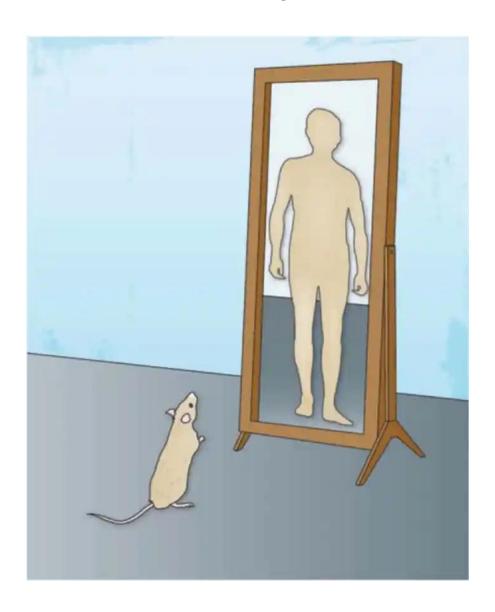
The invader or parts of it can be directly used.

vaccine is based on MATERIAL

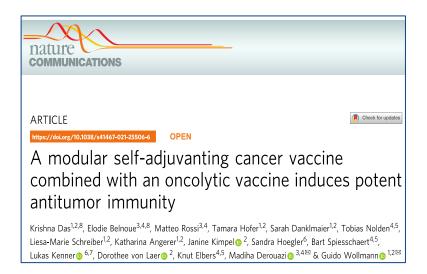
vector vaccines are the exception

A tumor is part of oneself.

The tumor cannot be directly used

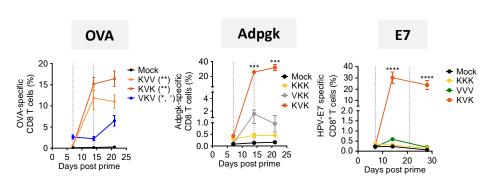


vaccine is based on INFORMATION



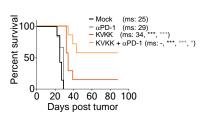
vector vaccines are the rule

When mice tell lies – and when they don't



Cancer vaccines work! in mice

TME remodeling I Antigen presentation TME remodeling Antigen presentation Totals Totals Constitution Consti

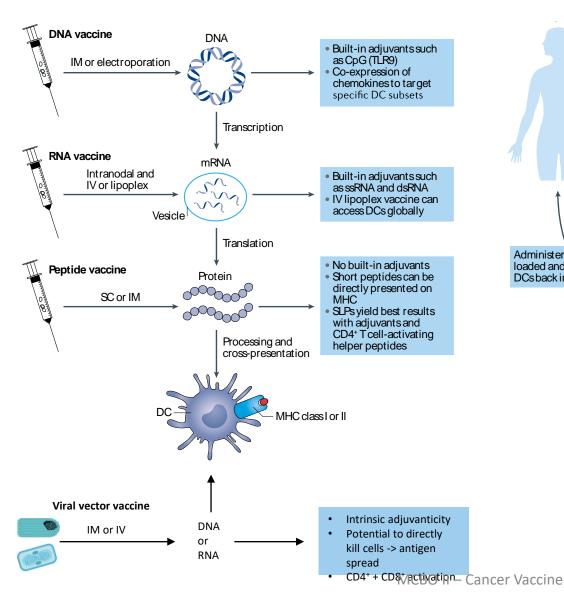

Antigen-specific T cell induction



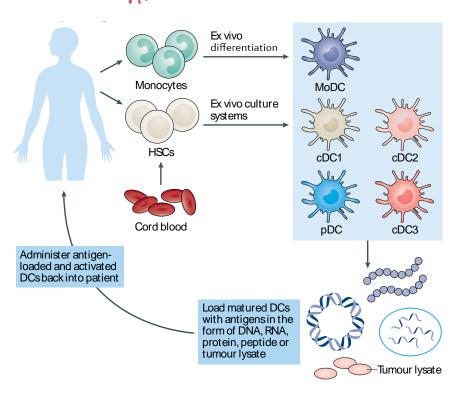
Mock NX W KV

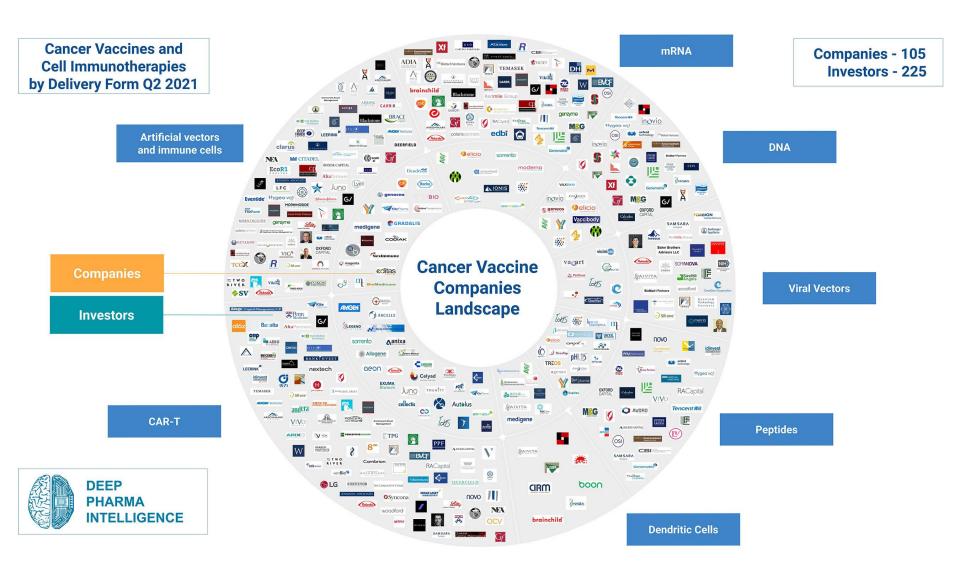
TILs infiltration

Effect on CPI failures


Vaccine

Platform vs Target

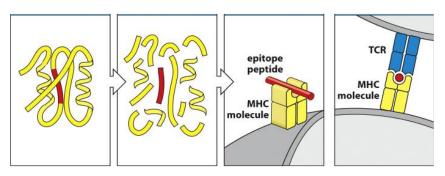

General requirements


- target: antigen presenting cells (DCs)
- MHC-1 presentation = intracellular proteins
- immune adjuvanticity

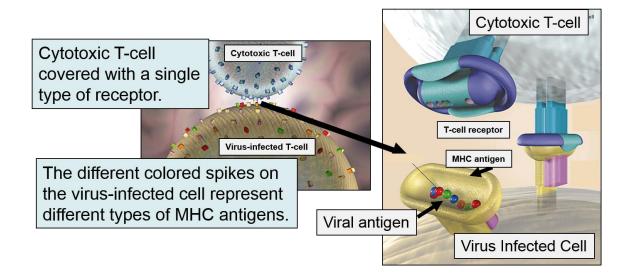
inside the body

w outside the body

We don't have a shortage on effective vaccine platforms !!!



vaccine targets


tumor antigens

Antigen presentation and recognition

antigen = only a SMALL PART of a protein

T cell recognition is HIGHLY specific for certain epitopes

Perfect world tumor antigen

Perfect world tumor antigen

• selective expression in tumor cells

homogenous expression in all tumor cells

• essential expression in tumor cells

high immunogenicity

Perfect world tumor antigen

Tumor antigen classes

Foreignness		
Immunogenicity		
Tolerance		
Shared		
Personalized		
Cost		

tumor ASSOCIATED antigen			
Cancer Testis Overexpression Lineage			
	low		
low			
high			
mostly			
rarely			
medium			

^{*} only few tumor entities

Tumor antigen classes

	tumor SPECIFIC antigen		tumor	ASSOCIATED a	ntigen
	Neoantigen	Oncoviral	Cancer Testis Overexpression Lineage		Lineage
Foreignness	high	high	low		
Immunogenicity	high	high	low		
Tolerance	low	low	high		
Shared	rarely	mostly*	mostly		
Personalized	mostly	yes (HLA)/no	rarely		
Cost	high	medium	medium		

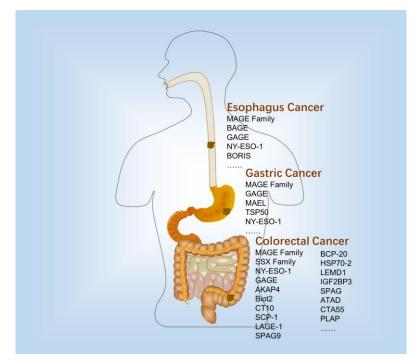
^{*} only few tumor entities

Non-personalized tumor antigens – examples

oncoviral	cancer testis (> 140 CTA)	lineage	overexpression
 HPV E6/7 	• NY-ESO-1	• HER2/Neu	• MUC1
LMP1/LMP2	MAGE-A	• MUC1	• WT1
	• SAGE	• gp100	• EGFR
	• LY6K		
	• CDCA1		
	 PRAME 		

Oncoviral tumor antigens

Antigen	Oncovirus	Associated cancer
E6, E7	HPV	cervix CA, head-neck SCC
LMP1, LMP2	EBV	Nasopharingeal CA, B cell lymphoma
Large T, small T	Merkel Polyomavirus	skin CA
Tax	HTLV1 retrovirus	T cell leukaemia


Cancer testis antigens

over 140 cancer testis antigens (CTA) known to date

CTA main examples

Antigen	Associated cancer
NY-ESO-1	melanoma
MAGE-A	melanoma, lung
BAGE	melanoma, other cancers
PRAME	melanoma, other cancers
XAGE1B	multiple cancers
WT1	multiple cancers

CTA examples gastro-intestinal tumors

Cancer testis antigens

Tumor-associated antigen clinical trials in lung cancer

Platform	Name	TAA	Phase	Patients		Signs of efficacy
cellular vaccine	GVAX	Autol. tumor cells	1/11	86	NCT00074295	negative
ılar v	Belagenpumatucel- L	Allogenic NSCLC	III	532	NCT00676507	negative
cellt	1650-G	Allogenic NSCLC	II	12	NCT00654030	n.a.
	MAGE-A3	MAGE-A3	III	2312	MAGRIT, NCT00480025	negative
σ	CIMAvax-EGF	EGF	III	579		negative
peptide	Racotumomab-alum	NeuGcGM3	III	1082	NCT01460472	low
٥	Tecemotide (L-BLP25)	MUC-1	III	1513	NCT00409188	negative
	PRAME	PRAME	I	60	NCT01159964	negative
virus	TG4010	MUC-1	II	65	NCT00415818	positive
ķ	LV305	NY-ESO-1	I	47	NCT02122861	positive
DNA	V934/935	htert	I		NCT00753415	
	CV9201	NY-ESO-1, MAGE-C1,2, Survivin, 5T4, MUC	1/11	46	NCT00923312	immunogenicity
RNA	CV9202	NY-ESO-1, MAGE-C1,2, Survivin, 5T4, MUC	I	26		immunogenicity
	mRNA-5671/V941	KRAS (G12D, G12V, G13D, G12C)	ı	100	NCT03948763	

=> few signs of efficacy

Cancer testis antigens

THE LANCET Oncology

Efficacy of the MAGE-A3 cancer immunotherapeutic as adjuvant therapy in patients with resected MAGE-A3-positive non-small-cell lung cancer (MAGRIT): a randomised, double-blind, placebo-controlled, phase 3 trial

Prof Dr Johan F Vansteenkiste, MD & Byoung Chul Cho, MD & Tonu Vanakesa, MD & Tommaso De Pas, MD & Prof Marcin Zielinski, MD & Moon Soo Kim, MD & Prof Jacek Jassem, MD & Masahiro Yoshimura, MD & Jubrail Dahabreh, MD & Haruhiku Nakayama, MD & Libor Havel, MD & Haruhiko Kondo, MD & Prof Tetsuya Mitsudomi, MD & Prof Konstantinos Zarogoulidis, MD & Oleg A Gladkov, MD & Katalin Udud, MD & Hirohito Tada, MD & Prof Hans Hoffman, MD & Anders Bugge, MD & Paul Taylor, MD & Prof Emilio Esteban Gonzalez, MD & Prof Mei Lin Liao, MD & Jianxing He, MD & Prof Jean-Louis Pujol, MD & Jamila Louahed, PhD & Muriel Debois, MSc & Vincent Brichard, MD & Channa Debruyne, MD & Patrick Therasse, MD & Nasser Altorki, MD & Show less

Published: April 27, 2016 & DOI: https://doi.org/10.1016/S1470-2045(16)00099-1

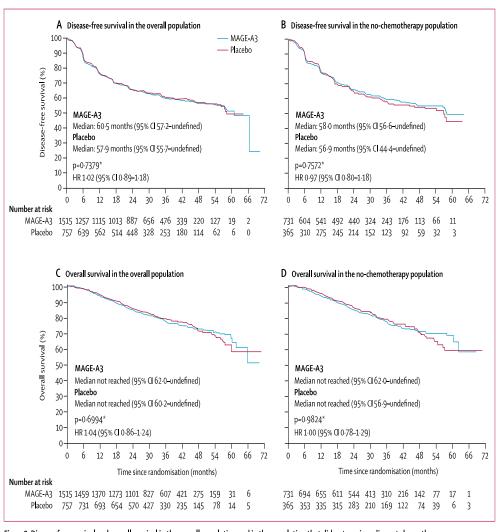


Figure 2: Disease-free survival and overall survival in the overall population and in the population that did not receive adjuvant chemotherapy

Lineage / differentiation antigens

main examples

Antigen	Associated cancer
mesothelin	multiple CA
gp100	melanoma
tyrosinase	melanoma
PSA/ PSMA	prostate CA
MUC1	multiple cancers
CA125	ovarian CA

Overexpression antigens

main examples

Antigen	Associated cancer
MUC1	multiple CA
WT1	multiple CA
EGFR	multiple CA
PSA/ PSMA	prostate CA
MUC1	multiple cancers

TAA combinations

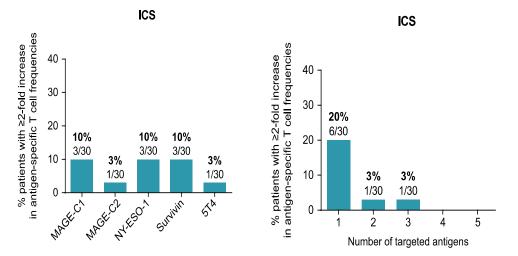
NY-ESO-1, MAGE-C1, MAGE-C2, survivin, 5T4, and MUC-1

Cancer Immunology, Immunotherapy (2019) 68:799-812 https://doi.org/10.1007/s00262-019-02315-x

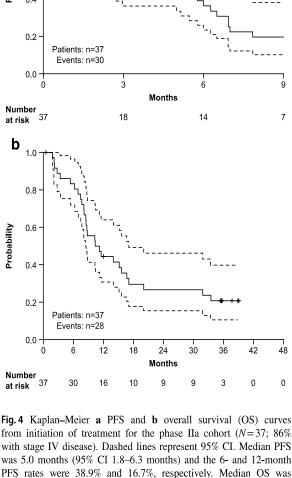
CLINICAL TRIAL REPORT

а

0.8


0.6

Probability


Probability

A phase I/IIa study of the mRNA-based cancer immunotherapy CV9201 in patients with stage IIIB/IV non-small cell lung cancer

Martin Sebastian^{1,13} · Andreas Schröder^{2,14} · Birgit Scheel² · Henoch S. Hong^{2,14} · Anke Muth² · Lotta von Boehmer^{3,15} · Alfred Zippelius⁴ · Frank Mayer^{5,16} · Martin Reck⁶ · Djordje Atanackovic^{7,17} · Michael Thomas⁸ · Folker Schneller⁹ · Jan Stöhlmacher^{10,18} · Helga Bernhard¹¹ · Andreas Gröschel^{12,19} · Thomas Lander² · Jochen Probst^{2,20} · Tanja Strack² · Volker Wiegand² · Ulrike Gnad-Vogt² · Karl-Josef Kallen^{2,21} · Ingmar Hoerr² · Florian von der Muelbe² · Mariola Fotin-Mleczek² · Alexander Knuth^{3,22} · Sven D. Koch^{2,23}

=> limited immunogenicity

from initiation of treatment for the phase IIa cohort (N=37: 86% with stage IV disease). Dashed lines represent 95% CI. Median PFS was 5.0 months (95% CI 1.8-6.3 months) and the 6- and 12-month PFS rates were 38.9% and 16.7%, respectively. Median OS was 10.8 months (95% CI 8.1-16.7 months) and survival rates at 1, 2, and 3 years were 44.4%, 26.7%, and 20.7%, respectively

TAA cancer vaccine clinical development

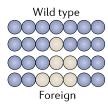
Meta-analysis

Breast CA

46 studies, 1698 patients: ORR* only 9%

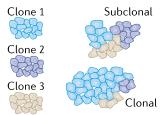
Ovarian CA

32 studies, 426 patients: ORR* only 4%

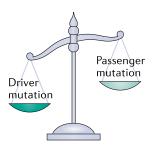

^{*}ORR = overall response rate (incl. stable disease, partial response, complete response)

Neoantigens

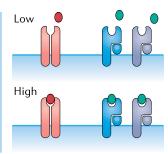
Qualities of neoantigens


Foreignness

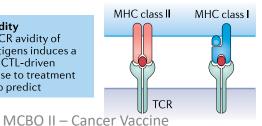
The greater the similarity to the wild-type amino acid sequence, the higher the probability of the responding T cells to be deleted during thymic selection


Clonal distribution

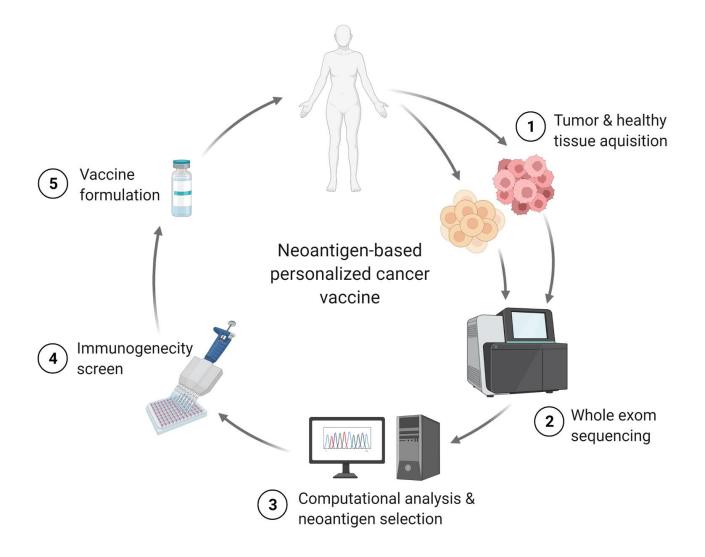
Subclonal mutations are present in a small percentage of tumour cells and have high chance of losing expression either spontaneously or after ICI


Driver vs passenger mutation

Passenger mutations are subject to loss of expression through tumour evolution or immune resistance. Driver mutations are more conserved as these serve critical survival functions


MHC presentation

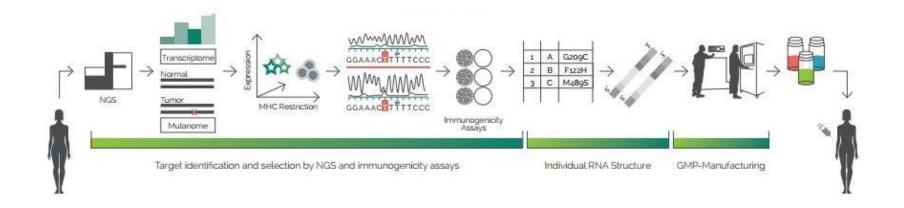
Neoantigen presentation on MHC class I and/or MHC class II molecules and expression in tumours with higher HLA heterozygosity in HLA class I loci is more likely to induce T cell infiltration and increase survival in response to ICI



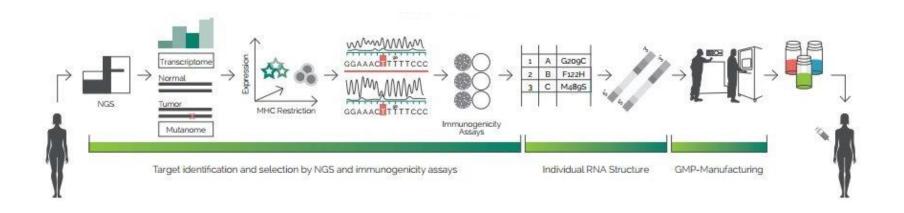
TCR avidity

 High TCR avidity of neoantigens induces a strong ČTL-driven response to treatment Hard to predict

Personalized neoantigen vaccine – the simplified view

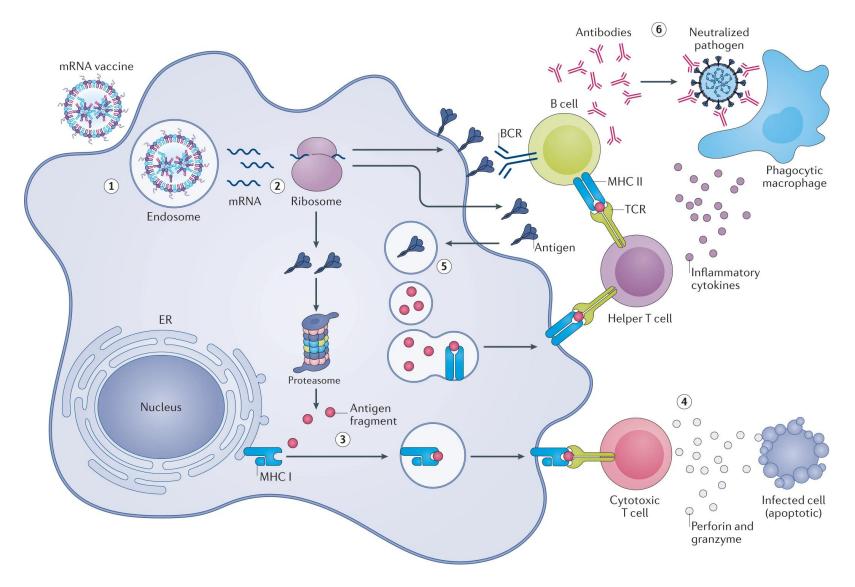


Personalized neoantigen vaccine – CHALLENGES


Challenges with personalized neoantigen vaccines:

- Speed
- Metastatic heterogeneity
- TMB (tumor mutational burden)
- Prediction
- HLA dependence

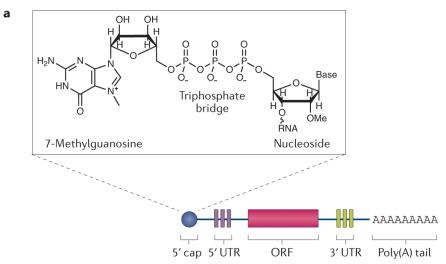
Challenge I - speed

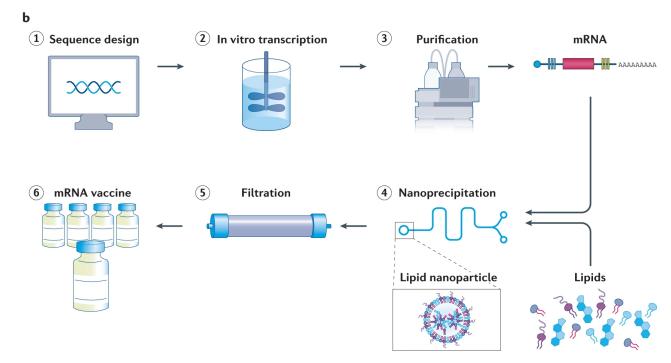

Challenge I - speed

Turn around time from tumor biopsy to GMP-grade production and treatment*:

< 1 month!!!

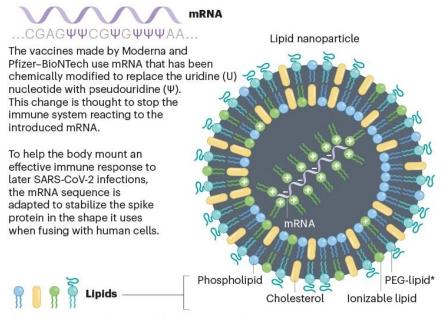
Mode of action


Challenge of using mRNA vectors


- 1.
- 2.
- 3.

Challenge of using mRNA vectors

- 1. mRNA stability
- 2. mRNA delivery
- 3. mRNA reactogenicity


Manufacturing mRNA - LNP vaccines

INSIDE AN MRNA COVID VACCINE

COVID-19 vaccines made from messenger RNA use lipid nanoparticles — bubbles of fats — to carry the molecules into cells. The mRNA contains the code for cells to produce the 'spike' protein that the coronavirus SARS-CoV-2 uses to enter cells. Here are key innovations in the design of these vaccines.

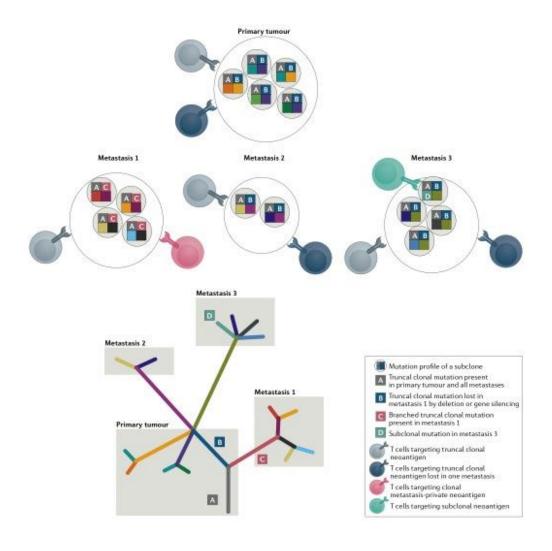
The fatty nanoparticle around the mRNA is made of four types of lipid molecule. One of these is 'ionizable': in the vaccine, many of these molecules have a positive charge and cling to negatively charged mRNA, but they lose that charge in the more alkaline conditions of the bloodstream, reducing toxicity in the body.

*Lipid attached to polyethylene glycol

onature

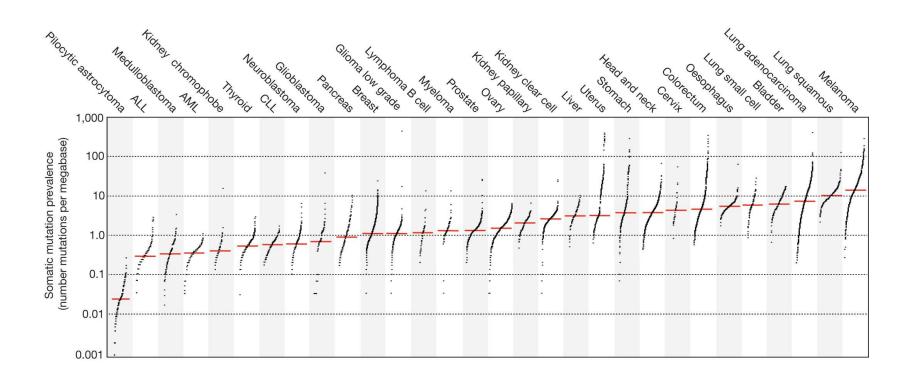
mRNA vaccines allow for a rapid turnover from design to clinical grade production:

- information input does not change biology/chemistry of compound
- stable pharmacokinetics (PK) and pharmacodynamics (PD)

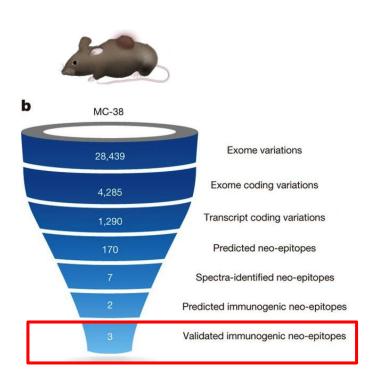

mRNA modification

mRNA modifications reduce the cellular defense mechanisms against exogenous mRNA:

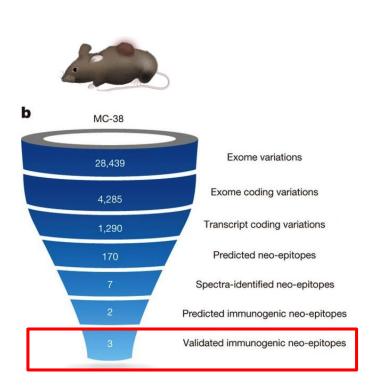
- much higher antigen production inside the cell
- superior antibody responses
- role of mRNA modification on T cell immunity unclear

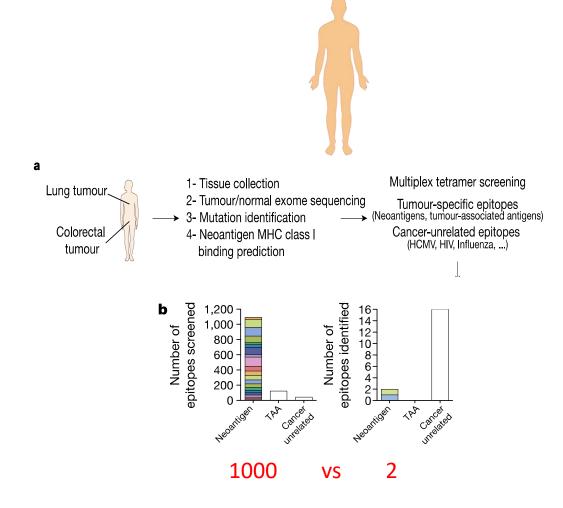

Challenge II – heterogeneity of neoantigen landscape

Neoantigens often differ between primary and secondary tumor sites!

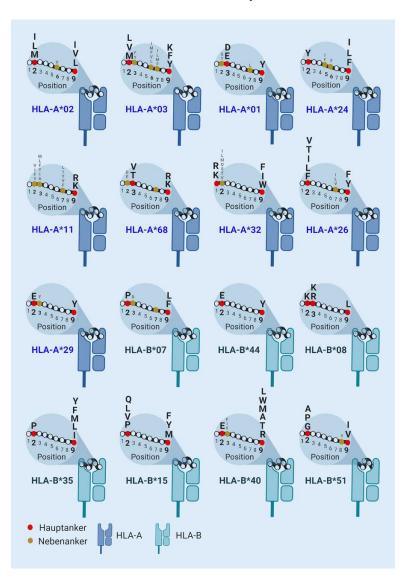


Challenge III – dependence on tumor mutational burden (TMB)


mutation frequency varies between tumor types



Challenge IV – computational prediction


Challenge IV – computational prediction

Challenge V – HLA dependency

HLA Variability

Epitope prediction depends on common HLA types

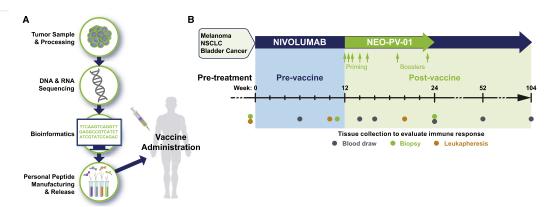
Personalized neoantigen vaccine – clinical trials

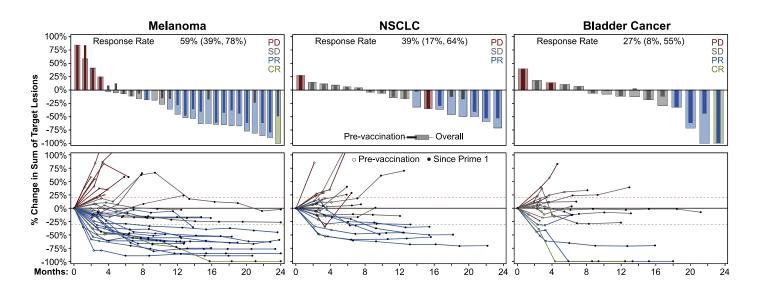
Table 2 | Published clinical trials utilizing neoantigens as targets

Year of publication	Investigator/sponsor	Clinicaltrials.gov identifier, phase	Indication	Platform /treatment	Key results	Ref.
2014	NIH	NCT01174121, 1	Metastatic cholangiocarcinoma	Adoptive transfer of neoantigen-specific (ERBB2IP E805G) CD4* T cells isolated from tumor	Decrease in target lesions with stabilization of disease, reinjection led to tumor regression, single patient report	9
2015	Washington University	NCT00683670,1	Stage III or IV melanoma	Intravenous application of neoepitope peptide-loaded DC vaccine	CD8* T cell responses and broadened antigenic breadth as well as clonal diversity	188,189
2016	NIH	NCT01174121, 2	Metastatic colorectal cancer	Adoptive transfer of neoantigen-specific (KRAS G12D) CD8* T cells isolated from tumor	Regression of multiple lung metastases upon infusion of four different T cell clonotypes	8
2017	BioNTech	NCT02035956,1	Stage III or IV melanoma	Intranodal application of naked mRNA vaccine encoding for multiple neoepitopes	CD8 ⁺ and especially CD4 ⁺ T cell responses against multiple neoantigens, significant reduction of cumulative rate of metastatic events after vaccination	173
2017	Dana-Farber Cancer Institute	NCT01970358, 1	Stage III or IV melanoma	Subcutaneous application of peptide vaccine consisting of pooled mutated epitopes	Polyfunctional CD8* and especially CD4* T cell responses with durable memory response, recognition of autologous tumor, combination with anti-PD-1 therapy beneficial for clinical outcome	172,190
2019	Immatics	NCT02149225, 1	Glioblastoma	Intradermal application of peptide vaccine consisting of shared and mutated epitopes	CD8 ⁺ and CD4 ⁺ T cell responses against multiple shared and mutated epitopes	191
2019	Dana-Farber Cancer Institute	NCT02287428, 1/1b	Glioblastoma	Subcutaneous application of peptide vaccine consisting of pooled mutated epitopes	Polyfunctional CD8* and CD4* T cell responses with enriched memory phenotype and augmented T cell infiltration to the tumor	192
2020	Dana-Farber Cancer Institute /Neon Therapeutics / BioNTech US	NCT02897765,1	Advanced melanoma, NSCLC, bladder cancer	Subcutaneous application of peptide vaccine consisting of pooled mutated epitopes combined with PD-1 blockade	Durable CD8* and especially CD4* T cell responses with cytotoxic potential, observation of epitope spreading upon vaccination	193
2020	NIH/Moderna	NCT03480152,1	Metastatic gastrointestinal cancer	Intramuscular application of LNP-formulated mRNA vaccine encoding for multiple neoepitopes	CD8 ⁺ and CD4 ⁺ T cell responses against multiple mutated epitopes, small patient group (n=4), no objective clinical response	194
2021	NCT/ University of Heidelberg	NCT02454634,1	Newly diagnosed glioma	Subcutaneous application of a single IDH1 (R132H) peptide vaccine	Vaccine-induced CD4 ⁺ T cell responses across multiple MHC alleles in over 90% of the patients	174

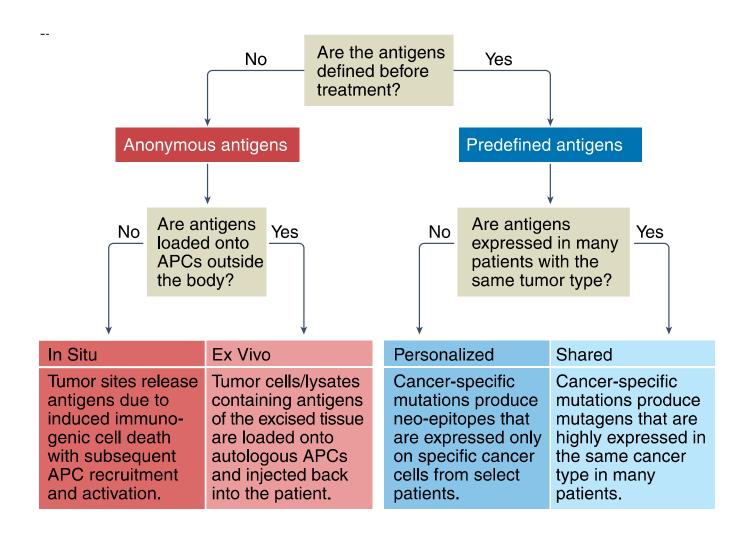
Personalized neoantigen vaccine – clinical trials

Cell




Volume 183, Issue 2, 15 October 2020, Pages 347-362.e24

Article


A Phase Ib Trial of Personalized Neoantigen Therapy Plus Anti-PD-1 in Patients with Advanced Melanoma, Non-small Cell Lung Cancer, or Bladder Cancer

Patrick A. Ott ¹ A B, Siwen Hu-Lieskovan ², Bartosz Chmielowski ², Ramaswamy Govindan ³, Aung Naing ⁴, Nina Bhardwaj ⁵, Kim Margolin ⁶, Mark M. Awad ¹, Matthew D. Hellmann ⁷, Jessica J. Lin ⁸, Terence Friedlander ⁹, Meghan E. Bushway ¹⁰, Kristen N. Balogh ¹⁰, Tracey E. Sciuto ¹⁰, Victoria Kohler ¹⁰, Samantha J. Turnbull ¹⁰, Rana Besada ¹⁰, Riley R. Curran ¹⁰ ... Lakshmi Srinivasan ¹⁰, ¹¹ A B

Tumor antigens – quo vadis?

Tumor antigens – anything else?

Private neoantigens

Shared tumor-associated antigens

Black box

Tumor antigens – anything else?

Private neoantigens

Shared tumor-associated antigens

The road ahead

Shared neoantigens

- 1. driver mutations (e.g. KRAS, p53)
- 2. NON-coding regions
- 3. splicing variants
- 4. cryptic peptides

Questions???