Part II – paper discussion

Article Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer

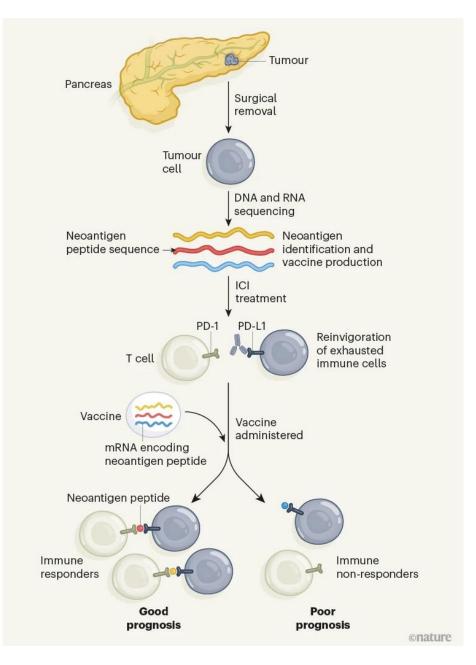
https://doi.org/10.1038/s41586-023-06063-y

Received: 10 January 2023

Accepted: 6 April 2023

Published online: 10 May 2023

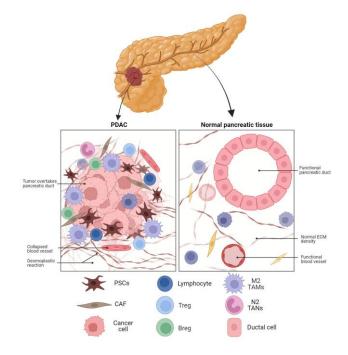
Open access


Check for updates

Luis A. Rojas^{12,18}, Zachary Sethna^{12,18}, Kevin C. Soares^{2,3}, Cristina Olcese², Nan Pang², Erin Patterson², Jayon Lihm⁴, Nicholas Ceglia⁴, Pablo Guasp^{1,2}, Alexander Chu⁴, Rebecca Yu^{1,2}, Adrienne Kaya Chandra^{1,2}, Theresa Waters^{1,2}, Jennifer Ruan^{1,2}, Masataka Amisaki^{1,2}, Abderezak Zebboudj^{1,2}, Zagaa Odgerel^{1,2}, George Payne^{1,2}, Evelyna Derhovanessian⁵, Felicitas Müller⁵, Ina Rhee⁶, Mahesh Yadav⁶, Anton Dobrin^{7,8}, Michel Sadelain^{7,8}, Marta Łuksza⁹, Noah Cohen¹⁰, Laura Tang¹¹, Olca Basturk¹¹, Mithat Gönen¹², Seth Katz¹³, Richard Kinh Do¹³, Andrew S. Epstein¹⁴, Parisa Momtaz¹⁴, Wungki Park^{3,14}, Ryan Sugarman¹⁴, Anna M. Varghese¹⁴, Elizabeth Won¹⁴, Avni Desai¹⁴, Alice C. Wei^{2,3}, Michael I. D'Angelica^{2,3}, T. Peter Kingham^{2,3}, Ira Mellman⁶, Taha Merghoub¹⁵, Jedd D. Wolchok¹⁵, Ugur Sahin⁵, Özlem Türeci^{5,16}, Benjamin D. Greenbaum^{4,17}, William R. Jarnagin^{2,3}, Jeffrey Drebin^{2,3}, Eileen M. O'Reilly^{3,14} & Vinod P. Balachandran^{1,2,3}

Nature 618, 144–150 (2023).

Story at a glance



MCBO II – Cancer Vaccine

Commentary: Huff AL and Zaidi N., 2023. Nature

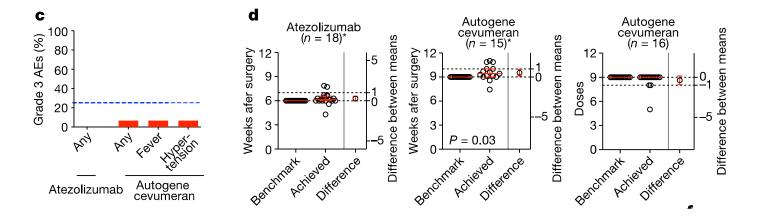
Background

- Pancreatic ductal adenocarcinoma (PDAC)
 - only 20% operable
 - 90% recurrence after median 8 months
 - 5 year overall survival < 10%
 - 5 year OS after adjuvant chemotherapy < 30%
- KRAS mutation as driver mutation; but low overall (passenger) mutation rate
 - \rightarrow usually non-responsive to immune checkpoint inhibitors
 - \rightarrow but subset of patients known to have higher mutation rates and better prognosis

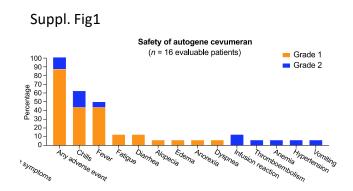
Approach

- 16 pancreas cancer patients
- phase 1 clinical trial: adjuvant personalized neoantigen mRNA cancer vaccine
- up to 20 neoantigens per vaccine compound
- **co-treatment with checkpoint inhibitor** anti-PD-L1 (atezolizumab)
- co-treatment with four-drug chemotherapy
- Study endpoints:
 - Neoantigen-specific T cell immunogenicity assay
 - 18 month recurrence-free survival

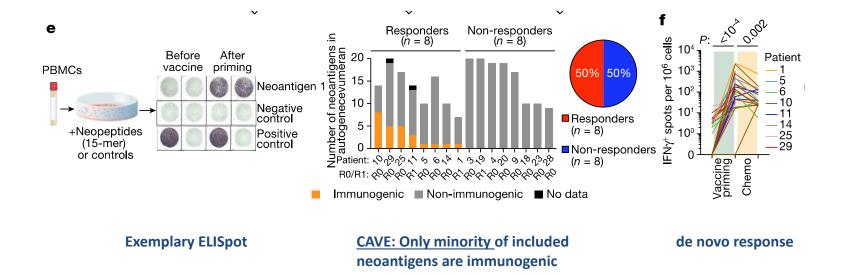
Trial design


а Custom manufacture autogene cevumeran Process and Sequence (individualized transport tumour and Predict and select neoantigen-encoding tissues normal DNA neoantigens mRNA-lipoplex) Key inclusion criteria XXXXXXX All surgically resectable PDAC - No borderline resectable Resection **Tumour RNA** - No locally advanced or metastatic disease - No neoadjuvant therapy Custom manufacture ≥5 neoantigens autogene cevumeran **mFOLFIRINOX** Autogene cevumeran Week 0 17 21 43 46 6 9 Follow-up Screen Priming doses 1-8 for eligibility Surgery Atezolizumab 12 cycles Booster 1 dose (biweekly) dose 9

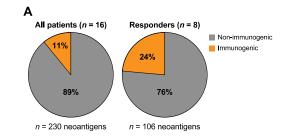
Patient selection


b 34 screened and consented 2 excluded 2 did not meet inclusion criteria 32 enrolled 4 removed before resection • 3 withdrew consent • 1 had disease progression 28 resected on protocol 9 removed before atezolizumab • 6 advanced or metastatic disease 1 non-PDAC diagnosis ۰ • 1 withdrew consent • 1 manufacture failure 19 received (inadequate tissue) atezolizumaba Evaluable patients 3 removed before vaccine • 1 disease progression • 1 for other cancer treatment • 1 insufficient neoantigens 16 received vaccine^b 1 removed before mFOLFIRINOX 1 disease progression 15 received **mFOLFIRINOX** ^aSafety-evaluable cohort

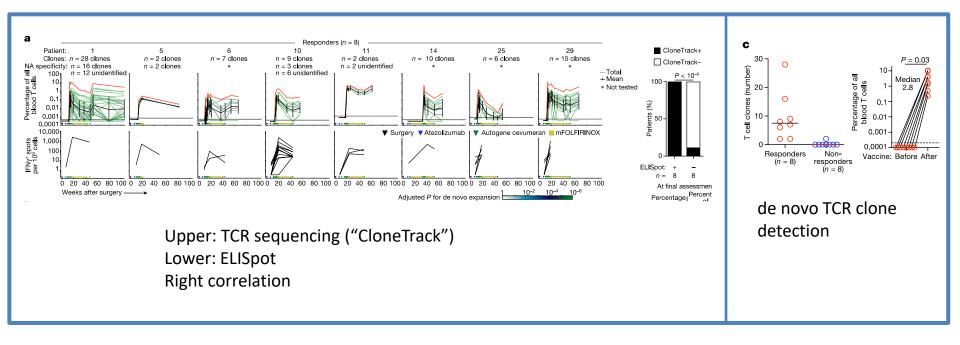
^bBiomarker-evaluable cohort

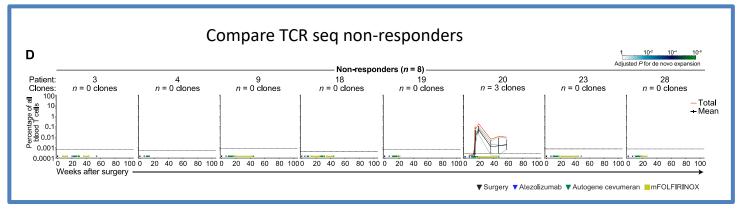

Individualized mRNA neoantigen vaccines are safe and feasible

- Very **safe** (only 1/16 patient showed grade 3 adverse reaction to vaccine)
- "needle-to-needle" time 9-10 weeks
- Most received 8 priming + 1 boosting doses of mRNA vaccine

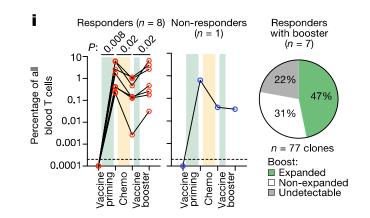


Individualized mRNA neoantigen vaccines are immunogenic

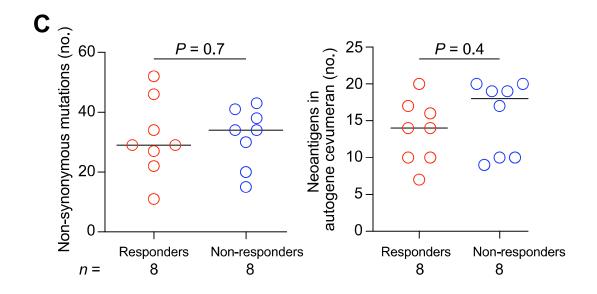



50% of patients showed measurable immune responses against neoantigens

But only minority of all neoantigens responded to!

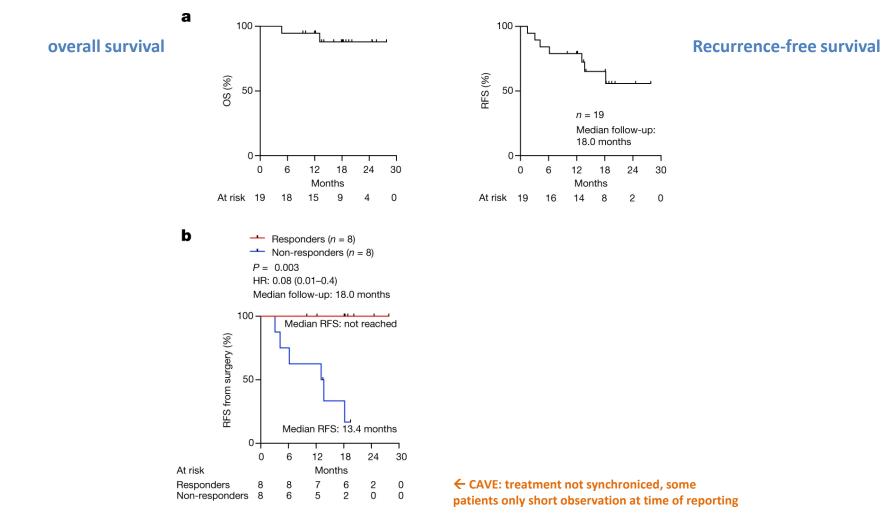


mRNA vaccines expand effector CD8+ T cells


Boost effect of mRNA vaccines after chemotherapy

T cell boost

Important: maintained T cell functionality under chemotherapy (up to 2 years)!


Quantity of detected and selected mutations

Important: similar QUANTITY of mutations and neoantigens between reponders and non-reponders

 \rightarrow neoantigen QUALITY correlates to vaccine response

mRNA vaccine response correlates with delayed PDAC recurrence

Summary

- mRNA vaccination showed **favorable safety profile**
- neoantigen specific immune responses can be induced in a tumor field normally not responsive to immune therapies
- even among responders, half only showed monotope responses (single antigen)
- TCRseq for clonal expansion correlates with antigen specific ELISpot
- indication that **neoantigen QUALITY** might impact response vs non-response
- preliminary indication that individualized neoantigen vaccine in combination treatment setting may delay tumor recurrence

Consideration

- CAVE: eligibility for inclusion into a phase 1 is already a strong selection bias towards better course of disease
- standard flow cytometry can miss vaccine induced T cell expansion \rightarrow TCR seq!
- CAVE: potential confounding factors:
 - 5/8 non-responders had SPLEENECTOMY!
 - non-responders had larger primary tumor sizes (3 vs 2 cm)!
 - responders had lower tumor stage (stage I vs stage III)