

# Genetic Epidemiology at the intersection between function and disease

Florian Kronenberg Institute of Genetic Epidemiology, Medical University of Innsbruck



















- Variations of single base pairs (bp) in the DNA sequence
- Heritable and stable.
- Account for 90% of the genetic variability
- Every 300 1000 bp
- At least 3 4 million SNPs per individual
- 10,000 11,000 non-synonymous SNPs per individual
- 700 million SNPs are described in databases



| Single Nucleotide Polymorphism (SNP)                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li><u>Coding SNPs within a gene</u> <ul> <li>synonymous exchanges: without influence on protein</li> <li>non-synonymous exchanges: resulting in an AA exchange</li> </ul> </li> </ul> |
| <ul> <li>SNPs within the regulatory regions:         <ul> <li>when and why a gene will be switched on or off</li> <li>effect on quantity of protein production</li> </ul> </li> </ul>       |
| <ul> <li>SNPs within the untranslated regions         <ul> <li>with influence on mRNA stability</li> </ul> </li> </ul>                                                                      |
| <ul> <li>SNPs in intergenic regions         <ul> <li>functional consequences have to be evaluated</li> </ul> </li> </ul>                                                                    |











# What does a significant genetic association mean?

#### Direct association

- ▶ The investigated genetic variant is indeed the causal disease-causing variant
- This was rarely the case in earlier times; improves nowadays by the dense map of markers we can investigate
- > Optimum pocedure: functional characterisation goes hand in hand

#### Indirect association

The investigated genetic variant is in linkage disequillibrium with the causal variant





















































# Gain in detected genes by GWAS

| Disease            | before<br>2007 | 2007<br>onward |
|--------------------|----------------|----------------|
| Type 2 DM          | 3              | 50             |
| Body mass index    | 1              | 30             |
| Glucose or insulin | 1              | 15             |
| Fat distribution   | 0              | 20             |
| Lipids             | 16             | 95             |
| Total              | 21             | 202            |

| 7 examples of autoimmune diseases |                |                |  |
|-----------------------------------|----------------|----------------|--|
| Disease                           | before<br>2007 | 2007<br>onward |  |
| Ankylosis spondylitis             | 1              | 13             |  |
| Rheumatoid arthritis              | 3              | 30             |  |
| Systemic lupus eryth.             | 3              | 31             |  |
| Type 1 DM                         | 4              | 40             |  |
| Multiple sclerosis                | 1              | 51             |  |
| Crohn's disease                   | 4              | 67             |  |
| Ulcerative colitis                | 3              | 44             |  |
| Total                             | 19             | 277            |  |

# Since 2012 the number of known genes has further increased by 5- to 10-fold

Visscher et al.: Am.J.Hum.Genet. 90:7-24, 2012 (updated)































Where is the reward?

# Can a single gene explaining less than 1% of the traits' variance still be useful for anything?





### **Conclusions on GWAS**

- An hypothesis-free approach
- Never before such a gain in gene-phenotypic information
- New genes for CAD, diabetes, cancer, kidney function...
- Odds ratios between 1.02 and 1.40
- To have the equipment is only the smallest step
- Very large studies of well phenotyped cohorts are necessary
- Works only within a very well constructed network between genetics, epidemiology, statistics, informatics, genomics
- Data sharing (a lot is already on the web)
- Non-coding SNPs and "gene deserts" can no longer be neglected
- A lot to learn about regulatory regions
- Functional characterization of "new" genes will need decades



