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INTRODUCTION 
 
The use of epigenome-wide association studies has 
provided a deeper insight into individual differences 
and fluctuations in DNA methylation levels in the 

human genome. Many studies have identified age-
related differentially methylated regions (DMRs) and 
sites (DMSs) that have the potential to predict 
epigenetic age in various human tissues [e.g. 1–4]. 
These studies indicated that epigenetic age is highly 
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ABSTRACT 
 
DNA methylation is known as a biomarker for age with applications in forensics. Here we describe the VISAGE 
(VISible Attributes through GEnomics) Consortium’s enhanced tool for epigenetic age estimation in somatic 
tissues. The tool is based on eight DNA methylation markers (44 CpGs), bisulfite multiplex PCR followed by 
sequencing on the MiSeq FGx platform, and three statistical prediction models for blood, buccal cells and 
bones. The model for blood is based on six CpGs from ELOVL2, MIR29B2CHG, KLF14, FHL2, TRIM59 and PDE4C, 
and predicts age with a mean absolute error (MAE) of 3.2 years, while the model for buccal cells includes five 
CpGs from PDE4C, MIR29B2CHG, ELOVL2, KLF14 and EDARADD and predicts age with MAE of 3.7 years, and the 
model for bones has six CpGs from ELOVL2, KLF14, PDE4C and ASPA and predicts age with MAE of 3.4 years. The 
VISAGE enhanced tool for age estimation in somatic tissues enables reliable collection of DNA methylation data 
from small amounts of DNA using a sensitive multiplex MPS assay that provides accurate estimation of age in 
blood, buccal swabs, and bones using the statistical model tailored to each tissue. 
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correlated with chronological age but have also revealed 
differences in epigenetic aging rates amongst 
individuals. The epigenetic aging rate was further 
correlated with lifespan, as well as age-related traits and 
diseases [5–8]. Although the potential of epigenetic age 
prediction in biomedical sciences needs further 
investigation, one promising application is found in 
forensics. 
 
DNA-based age prediction in forensic applications can 
be used for intelligence purposes to gain information 
from unknown individuals who have left their DNA at a 
crime scene or whose remains are subjected to genetic 
identification. Perpetrators, who remain unknown to the 
investigating authorities from their forensic DNA 
profiles, cannot be identified with standard DNA 
profiling techniques. In recent years, forensic DNA 
phenotyping has emerged as an approach that can obtain 
information of an unknown crime scene sample donor 
on their appearance and bio-geographic ancestry from 
crime scene DNA [9]. This allows for focused police 
investigations to help characterize unknown 
perpetrators, where estimating age from crime scene 
DNA would also be highly informative. Age is an 
important phenotypic feature that manifests itself 
through a set of visible attributes that are difficult to 
hide or modify, and therefore can be very effective in 
narrowing down the number of potential suspects in the 
context of forensic DNA phenotyping. In particular, 
aging is reflected in several features of human visible 
characteristics like hair greying, hair loss, facial 
wrinkles and other signs of aging skin [10]. Thus, 
reliable DNA-based prediction of appearance traits as a 
forensic intelligence tool is ideally accompanied with 
age estimation. 
 
A number of methods that use DNA methylation 
markers to predict age have been reported. Such 
methods can be classified into two main categories 
according to the number of CpG sites included. Large 
scale methods incorporate hundreds of loci [2, 3, 5, 11] 
and require DNA microarray technology to collect the 
data necessary for using predictive algorithms. Since 
forensic genetics is very demanding in terms of the 
sensitivity of the methods applied, smaller sets of 
markers that can be analyzed using lower DNA input 
methods are more suitable. Most of the epigenetic age 
prediction methods proposed in the forensic field have 
been designed to predict age in blood. Weidner et al. 
(2014) developed a 3-CpG model involving genes 
ASPA, ITGA2B and PDE4C, and using pyrosequencing 
technology that allowed age estimation with a mean 
absolute error (MAE) of 4.12 years. Several smaller age 
predictive tests were then proposed in forensics [12, 
13]. The test developed by Zbieć-Piekarska offered a set 
of markers suitable to predict age from blood in 

Europeans and Asians [14]. The method involved 
analysis of five DMSs in ELOVL2, TRIM59, 
C1orf132/MIR29B2CHG, KLF14 and FHL2, that 
provided prediction accuracy in blood with a MAE of 
3.7 and 4.2 years in Polish and Korean populations, 
respectively [12, 14]. Importantly, these markers also 
showed similar accuracy for age prediction in saliva 
(MAE = 3.6 years) [15] and buccal swabs (MAE = 4.3 
years) [15]. Moreover, some of these markers also 
showed a correlation with age in bones and teeth [16–
18]. Blood (especially bloodstains), buccal swabs, and 
skeletal remains are commonly analyzed in forensic 
laboratories for human identification. Age estimation 
methods developed for these tissues may provide 
additional information to assist with the identification 
process. The VISAGE consortium has implemented 
these five markers in a basic tool for sensitive multiplex 
PCR amplification of bisulfite converted DNA followed 
by a massively parallel sequencing (MPS) on a MiSeq 
FGx instrument [19]. Indeed, due to the quantitative 
character of DNA methylation variation and the well-
known method-to-method bias of DNA methylation 
analysis, predictive models based on data generated 
with one method, including public datasets based on 
DNA methylation microarrays [12, 15] cannot be easily 
adopted to interpret DNA methylation data generated 
with another method. Methylation analysis methods 
widely vary in forensic use and have hampered 
comparisons of the efficiency of qPCR [20], SNaPshot 
[21] and MPS [22]. 
 
MPS offers a universal solution to DNA variation 
analysis that can be applied to study DMSs as well as 
the established variation of single nucleotide 
polymorphism (SNPs) and short tandem repeats (STRs) 
[23]. Differences exist between MPS analysis of both 
marker types since the completely quantitative nature of 
DMS analysis contrasts with the mainly qualitative 
nature of SNP and STR analysis, so the MPS multiplex 
capacity is markedly lower for DMS analysis compared 
to SNP and STR analysis. Genotyping of bisulfite-
converted DNA has become the standard for DNA 
methylation analysis. Although the design of targeted 
PCR-based MPS tests is difficult to apply to bisulfite-
converted DNA, small scale multiplexing is possible 
and this could be a solution to the problem of measuring 
DNA methylation in forensic genetic tests, offering the 
right balance between sensitivity, throughput and 
reliability. The forensic community has made the first 
steps towards implementation of MPS for DNA 
methylation analysis [24–26]. 
 
In this study, we have advanced the development of 
epigenetic age estimation in forensics and present the 
VISAGE enhanced tool for age estimation of DNA 
from somatic tissues, combining eight age-informative 
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DNA methylation markers into a bisulfite multiplex 
PCR for simultaneous targeted MPS and three new 
statistical models to predict age in blood, buccal cells 
and bones. 
 
RESULTS 
 
Assay development and optimization 
 
Eight age-informative DNA methylation markers 
containing 44 CpG sites (Supplementary Table 1) were 
selected from the literature based on their reported age 
correlation in different somatic tissues such as blood, 
buccal cells and bones [11, 12, 27–31], and were 
successfully combined into one multiplex PCR assay 
for bisulfite-converted DNA. Five of these selected 
markers were included in the previously described 
VISAGE basic tool for estimating age from blood [19]. 
Primer pairs targeting three newly selected markers, 
EDARADD, PDE4C and ASPA were added sequentially 
to the multiplex assay of the VISAGE basic age tool 
[19] to monitor the effect of each added marker 
individually and to finally achieve a functioning 
multiplex for all eight markers (Table 1). 
 
The design was first tested with artificially methylated 
DNA standards (N = 10) at an optimum input DNA 
amount for bisulfite conversion of 200 ng using the 
MiSeq Reagent Kit v2. Sequence read depth at all 44 
CpGs covered by the primer design of the eight DNA 
methylation markers exceeded the minimum of 1,000 
reads (mean = 42,012.1 ± 21,282.7 paired reads) set for 
accurate methylation quantification [32]. Measured 
methylation values of the differentially methylated 
DNA standards showed robust quantification with an 
average difference between duplicates of 1.3% ± 2.1% 
(one CpG per marker; Supplementary Figure 1). As 
expected from the lower PCR product yields for 
PDE4C, CpG positions located in the target sequence of 
this marker produced low read depths (mean = 3,386.3 
± 1,630.4 paired reads) compared to the other markers. 
Figure 1A illustrates normalized read depth of one CpG 
site per marker, clearly indicating the lower sequence 
output of PDE4C C5. Furthermore, the read depths of 
the CpGs located in PDE4C (7 CpGs) and ELOVL2 (9 
CpGs) were lower for positions that were not covered 
during sequencing from both ends (Figure 1C, 1D). This 
results from the read length of the used sequencing kit 
(2 x 150 cycles), which is not sufficient to cover the 
whole targeted region of the two longest amplicons 
from both directions (ELOVL2: 267 bp and PDE4C: 
215 bp). 
 
Aiming at a balanced PCR multiplex, the concentrations 
of the PDE4C primers were increased equimolarly and 
more balanced amplicon yields were obtained at an 

assay concentration of 1 µM (Supplementary Figure 2). 
The altered PCR multiplex was tested using the MiSeq 
Reagent Kit v3 and methylated DNA standards (N = 
12). Read depth of PDE4C CpGs was increased to 
23,005.7 ± 4,659.5 paired reads. When comparing 
normalized read depths to earlier generated data, the 
performance of PDE4C was enhanced, but a fully 
balanced sequence read distribution was not achieved. 
This was observed in the relative decrease of read depth 
at MIR29B2CHG (Figure 1A). However, on average the 
v3 kit led to an approximately doubled sample coverage 
(v3: 701,330.8 ± 147,289.9 versus v2: 348,679.2 ± 
62,647.1 paired reads) and an increase in mean read 
depth of 45,109.4 paired reads (overall mean = 87,121.5 
± 54,854.7, Figure 1B). The number of reads at target 
CpG positions on MIR29B2CHG still yielded a mean of 
20,2435 ± 8,741 paired reads. Additionally, the longer 
read length of the v3 kit enabled constant read depths at 
all the CpGs of ELOVL2 and PDE4C across the 
targeted sequences (Figure 1C, 1D). The sequence 
quality control showed that all 44 target CpG positions 
had a misincorporation rate below 0.4% (mean = 
0.04%) and the calculated bisulfite conversion 
efficiency exceeded 99.6% for all samples. 
 
Evaluation of MPS assay performance 
 
Seven differentially methylated DNA standards were 
assessed with the final optimized assay using the v3 kit. 
The methylation quantification of all 44 CpGs versus 
the expected methylation is shown in Figure 2. 
Measured methylation levels at most CpGs were close 
to the line of identity, indicating good overall 
concordance between experimentally determined and 
actual methylation levels. CpG sites at MIR29B2CHG 
and EDARADD showed an overestimation of 
methylation levels, while CpGs at ELOVL2 exhibited a 
bias towards unmethylated Cs. The methylation 
quantification obtained appeared to be robust with an 
average difference between duplicates of 1.9% ± 1.2% 
across markers and methylation levels ranging from 5% 
to 75% (Supplementary Table 2). However, two outliers 
were detected: both the 50% methylated sample at 
PDE4C positions and the 25% methylated sample at 
MIR29B2CHG showed higher variation (12% and 7.5%, 
respectively) between duplicates. Potential variability 
between the target CpG sites throughout the same 
amplicon was explored by calculating the maximum 
difference in methylation at one marker and sample 
(excluding ASPA, N = 1). Overall, these differences 
were low with a mean of 1.8% ± 2% across markers and 
ratios. The highest variation was detected at KLF14 
with 3.9% ± 2.4% when comparing amplicons, which at 
the same time showed the most stable methylation 
quantification (mean difference between duplicates = 
0.8% ± 1%). Further evaluation of DNA standards at 
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Table 1. Primer sequences and concentrations of the final PCR multiplex. 

Marker Primer sequence (5'-3') CpGs 
[N] 

Amplicon 
size [bp] Amp. position (GRCh38) Strand 

Final 
conc. 
[µM] 

Design 

FHL2 
fwd: TGTTTTTAGGGTTTTGGGAGTATAG 1 

167 Chr2:105399250-105399416 + 0.2 [12] 
rev: ACACCTCCTAAAACTTCTCCAATCTCC 1 

KLF14 
fwd: GGTTTTAGGTTAAGTTATGTTTAATAGT 1 

128 Chr7:130734307-130734434 + 0.2 [12] a 
rev: ACTACTACAACCCAAAAATTCC 0 

TRIM59 
fwd: TATAGGTGGTTTGGGGGAGAG 1 

141 Chr3:160450140-160450280 + 0.2 [12] 
rev: AAAAAACACTACCCTCCACAACATAAC 1 

ELOVL2 
fwd: AGGGGAGTAGGGTAAGTGAG 1 

267 Chr6:11044500-11044766 + 0.2 [28] 
rev: AAACCCAACTATAAACAAAACCAA 0 

MIR29B2CHG 
fwd: GTAAATATATAAGTGGGGGAAGAAGGG 1 

146 Chr1:207823605-207823750 + 0.4 [12] 
rev: TTAATAAAACCAAATTCTAAAACATTC 0 

EDARADD 
fwd:TTGGTGATTAGGAGTTTTAGTGTTTT 0 

193 Chr1:236394309-236394501 - 0.4 [28] 
rev: CCACCTACAAATTCCCCAAA 0 

ASPA 
fwd: TTTTGGAGGAATTTATGGGAA 0 

108 Chr17:3476207-3476314 + 0.4 present study 
rev: ATAAATAATTTTACCTCCAACCCTA 0 

PDE4C 
fwd: TTGTAGGAGGAAAAGGGTTAG 1 

215 Chr19:18232953-18233167 + 0.4 or 1b present study 
rev: AAAACAAAAACTTACAACAAATTAAA 0 

aforward primer was adapted to match GRCh38. 
bassay design 1: 0.4 µM; assay design 2: 1 µM. 

different methylation levels showed that the highest 
differences were observed at 100% expected 
methylation with a mean of 3.8% ± 2.6%. 
 
Next, the 50% methylated DNA standard was used to 
test the sensitivity of the MPS assay with 200 ng, 100 
ng, 50 ng, 20 ng, 10 ng and 1 ng input DNA in duplicate 
reactions. Although sample coverage decreased from 
200 ng (mean = 374,254.5 paired reads) to 1 ng (mean = 
280,105 paired reads), the lower input samples still 
showed high sequencing coverage values. One outlier at 
10 ng was detected with lower coverage (76,464 paired 
reads) for one of the duplicates. This sample showed 
very low library quantification results (2.6 nM) in 
comparison to the median concentration of the 
sensitivity dilution series’ libraries (319.7 nM) and a 
read depth below the 1,000 reads threshold for the 
MIR29B2CHG amplicon. Except for one further sample 
at 1 ng DNA input for PDE4C, all other replicates 
showed read depths above the 1,000 reads threshold at 
the 44 targeted CpG sites. Furthermore, base 
misincorporation rates remained below 0.6% down to 
10 ng DNA input and below 1.3% for 1 ng samples. 
Bisulfite conversion efficiency exceeded 99.4% for all 
samples. 
 
Differences of mean methylation obtained for duplicates 
from 100 ng to 1 ng DNA input at all 44 CpGs were 
compared to the mean methylation level obtained for 
the 200 ng reference sample. The average differences 
and standard deviations per marker are shown in Figure 
3. At 100 ng and 50 ng DNA inputs, methylation levels 

were close to those of the reference with 1.6% ± 1.1% 
and 1.7% ± 1.4% differences across the eight markers, 
respectively. Variability increased slightly from 50 ng 
to 20 ng (3.4% ± 3.9%) and from 20 ng to 10 ng (4.4% 
± 2.7%). In particular, PDE4C showed higher variation 
at 10 ng with a mean difference of 11% to the optimum 
DNA input. A more detailed analysis of the 10 ng 
replicates showed an increased difference between 
duplicates (median = 6.0%) compared to the higher 
DNA input samples of the sensitivity study (median 
difference = 1.5% at 200 ng to 3.0% at 20 ng). Higher 
deviations from methylation values obtained for the 
reference DNA input were observed for the low 
quantity 10 ng sample (2.6 nM library) possibly 
introducing greater variation. Additionally, higher base 
misincorporation rates were observed within the 
PDE4C amplicon sequence of this duplicate 
(Supplementary Figure 3B). At 1 ng DNA input, 
methylation quantification became unreliable with 
extensive deviation from the values of the reference 
DNA input (14.0% ± 20.5%). 
 
Development of prediction model for blood, buccal 
cells and bones 
 
DNA methylation data generated with the MPS tool in 
blood (N = 160), buccal swab (N = 160) and bone (N = 
161) DNA samples were randomly divided into a 
training set (N = 112 each) and testing set (N = 48 blood 
and buccal cells and 49 bones) by retaining comparable 
distributions of age and sex between both sets as far as 
possible (Table 2). The correlation of DNAm in 
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particular CpG sites with age in blood, buccal cells and 
bones was investigated in the appropriate training sets 
using univariate linear regression analysis. All 44 CpG 
sites at the eight DNA methylation markers covered by 
the MPS tool showed a statistically significant 
correlation with age in blood (Supplementary Table 1). 
For 26 CpG sites (59%) located in ELOVL2, FHL2, 
TRIM59 and PDE4C very high β values were observed 
(>0.9) with single CpGs explaining R2 > 80% of the 
variation observed in age in blood samples (>90% for 8 
CpG sites within ELOVL2 and FHL2). The highest 
statistical significance was noted for ELOVL2 C9 (β = 
0.963; P-value = 9.724×10-65; R2 = 0.928). As with 
blood, all cytosines also showed significant correlation 
with age in buccal cells, but only in 13 of the sites 
(30%) were β values > 0.9 recorded. The highest 
significance was achieved for PDE4C C5 (β = 0.965; P-
value = 3.648×10-65); by itself explaining R2 = 93.1% of 
the variation observed in age in buccal cells 

(Supplementary Table 1). In the case of bones, 
significant correlation with age was observed for all 
CpGs except C2 and C3 from MIR29B2CHG. The 
position C1 in MIR29B2CHG was weakly but 
significantly correlated with age (β = -0.24; P-value = 
0.011). High significance and effect size with β > 0.8 
were noted for TRIM59 C3-C8 (P-value: 4.899×10-34; 
1.699×10-26; 4.431×10-27; 5.537×10-30; 4.2×10-32; 
8.743×10-34), KLF14 C3 (P-value: 1.68×10-33), ELOVL2 
C2 (2.021×10-33), FHL2 C5 (2.307×10-26) and C7 
(6.591×10-31), as well as PDE4C C4 (2.492×10-29), C6 
(6.886×10-30) and C7 (2.355×10-26). Since DNA 
methylation-age correlations may show non-linear 
patterns, various types of data transformation were also 
tested. Curve estimation analysis indicated a non-linear 
pattern for CpG sites within ELOVL2 with power 
transformation best fitting the DNA methylation data 
for blood and buccal cells and thus power transformed 
data were used in modelling (Figure 4). 

 

 
 

Figure 1. (A) Normalized read depth was calculated by selecting one CpG site per marker to assess for read distribution between amplicons. 
The dashed line indicates the expected value per marker (0.125) in case of a perfectly balanced distribution. (B) Read depth at one CpG site 
per marker. (C) Read depth at all CpGs located in the target sequence of PDE4C and (D) ELOVL2. All boxplots compare DNA methylation 
standards processed with the first assay design using the MiSeq reagent kit v2 (N = 10) and the re-optimized assay (design 2) using the MiSeq 
reagent kit v3 (N = 12). 
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DNA methylation data generated with the MPS tool for 
112 blood samples, 112 buccal cell samples and 112 
bone samples were next used to train the three 
respective models. Because of the lack of the data in 

PDE4C C5 or ELOVL2 C2, two samples from the 
training sets were rejected and therefore the final 
number of samples used to train the models for buccal 
cells and bones was 111. The multivariate stepwise 

 

 
 

Figure 2. Methylation quantifications obtained for duplicates (indicated by shape) were calculated for all 44 target CpG sites 
(ASPA: 1 CpG, EDDARAD: 2 CpGs, ELOVL2: 9 CpGs, FHL2: 10 CpGs, KLF14: 4 CpGs, MIR29B2CHG: 3 CpGs, PDE4C: 7 CpGs, 
TRIM59: 8 CpGs). The dashed line represents the line of identity (intercept = 0, slope = 1). 
 

 
 

Figure 3. Difference to 200 ng of sensitivity dilutions at 50% methylation level: The average difference per marker was 
calculated from mean obtained methylation values (N = 2) at all 44 target CpG sites. The error bars represent the standard 
deviation at markers targeting more than one CpG (EDARDD 2 CpGs, ELOVL2 9 CpGs, FHL2 10 CpGs, KLF14 4 CpGs, MIR29B2CHG 3 CpGs, 
PDE4C 7 CpGs, TRIM59 8 CpGs). Due to the high difference of PDE4C at 1 ng (61.9%), the value is excluded from the plot. 



www.aging-us.com 7 AGING 

Table 2. Samples used in multivariable linear regression analysis and prediction modelling. 

DNA source Sample 
number/sex Mean age 

Training set  Testing set 
Sample number Age range  Sample number Age range 

Blood 160/80:80 40.2±22.7 112 1-75  48 1-75 
Buccal cells 160/80:80 40.5±22.8 112a 2-80  48 2-80 
Bones 161/129:32 46.1±14.8 112a 19-93  49b 22-75 
abecause of the missing data for PDE4C C5 or ELOVL2 C2 one sample from the buccal cell training set and one sample from 
the bone training set were excluded and therefore the final number of samples to train the models was 111. 
bthree samples had missing data in ELOVL2 C2. 

linear regression method was applied to select markers 
from the available set of 44 CpGs from eight genes and 
to train the final models. The data for the selected CpG 
positions in ELOVL2 were power transformed before 
prediction analysis and this treatment proved to improve 
age prediction for DNA from blood and buccal cells. 
The analysis of blood samples showed that the optimal 
age model for blood centered on 6 CpG sites from six 
genes, ELOVL2, MIR29B2CHG, KLF14, TRIM59, 
FHL2 and PDE4C (Table 3). Effect sizes expressed by 
β values were different and except for marker 
MIR29B2CHG C1 (β = -0.234), were positively 
correlated with age. The largest effect size in the model 
was attributed to the power transformed ELOVL2 C7 
position (β = 0.328; P-value = 3.24×10-7) and the 
smallest one to TRIM59 C8 (β = 0.096; P-value = 
4.48×10-4). This model explains 98.2% of age variation 
(R2) observed in the training set and predicts age with 
an accuracy of MAE = 2.2 years in the training set and 

MAE = 3.2 years in the testing set (Figure 5 and Table 
4). Table 5 outlines the optimal model for buccal cells 
comprising 5 CpG sites from 5 genes, PDE4C, 
MIR29B2CHG, ELOVL2, KLF14 and EDARADD. The 
largest β value was observed for marker PDE4C C5 (β 
= 0.351; P-value = 1.29×10-7) and this position was 
found to explain most of the age variation explained by 
the model (R2 = 93.1%). Power transformed ELOVL2 
C9 had the second largest effect (β = 0.244; P-value = 
4.81×10-5). Negative and weak correlation was observed 
for a CpG in EDARADD not included in the blood 
model (β = -0.098). The final model explains R2 = 
97.5% of variation observed in the training set and 
predicts age with an accuracy of MAE = 2.5 years in the 
training set and MAE = 3.7 years in the testing set 
(Figure 5 and Table 4). 
 
Table 6 shows the optimal model for bones comprising 
six CpGs from four genes, ELOVL2, PDE4C, KLF14 

 

 
 

Figure 4. Curve estimation for DNA methylation data at ELOVL2 C7 in blood and ELOVL2 C9 in buccal cells. 
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Table 3. Characteristics of the markers in age predictive model for blood. 

CpG  CpG_ID GRCh38 chromosome 
position 

Standardized 
coefficient β t statistic P-value Adjusted R2 

ELOVL2 C7a - chr6:11044634 0.328 5.458 3.24×10-7 0.952 
PDE4C C5 - chr19: 18233127 0.125 2.785 0.006 0.962 
MIR29B2CHG C1 - chr1:207823681 -0.234 -8.555 1.05×10-13 0.974 
KLF14 C4 - chr7:130734375 0.111 4.751 6.46×10-6 0.977 
TRIM59 C8 - chr3:160450202 0.096 3.624 4.48×10-4 0.980 
FHL2 C1 cg06639320 chr2:105399282 0.169 3.419 0.001 0.982 
apower transformation for the DNA methylation data for ELOVL2 was applied (y = 0.002*x^2.366) before multiple linear 
regression analysis. 

and ASPA. The largest β value was observed for marker 
KLF14 C3 (β = 0.498; P-value = 2.002×10-16) and the 
smallest positive effect size in the model was attributed 
to marker ELOVL2 C7 (β = 0.20). The developed 
prediction model explains R2 = 92.4% of variation in 
age observed in the training set and predicts age with an 
accuracy of MAE = 3.3 in the training set and MAE = 
3.4 in the testing set (Figure 5 and Table 4). 
 
Our data show an increase in the MAE value with 
increased age of the sample donors for blood and 

buccal cell models. The highest MAE value was 
observed in the 3rd (age 41-60 years) and 4th (>60 
years) age categories (Table 4). When age was 
analyzed as a continuous variable it was significantly 
correlated with MAE in both tissue types (Pearson 
correlation P-value of 0.001 and 3.86×10-4 for blood 
training and testing sets, respectively and P-values of 
0.011 and 2.52×10-4 for buccal cells training and 
testing sets, respectively). This effect was not seen in 
bones, neither in the training (P-value = 0.122) nor the 
testing set (P-value = 0.070). 

 

 
 

Figure 5. Predicted vs. chronological age in the blood, bones and buccal cells training and testing sets. 
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Table 4. MAE in different age categories. 

Age category 
MAE in blood 

 
MAE in buccal cells 

 
MAE in bones 

Training set Testing set Training set Testing set Training set Testing set 
1  1.8 (N=28) 2.2 (N=12)  1.7 (N=28) 1.5 (N=12)  3.0 (N=2)b -b 
2 1.5 (N=28) 1.6 (N=12)  2.0 (N=27) 2.8 (N=12)  3.2 (N=42) 2.8 (N=17) 
3 2.7(N=28) 3.5 (N=12)  3.4 (N=28) 5.7 (N=12)  3.3 (N=47) 3.7 (N=21) 
4 3.0 (N=28) 5.5 (N=12)  3.1 (N=28) 4.8 (N=12)  3.3 (N=20) 3.9 (N=8) 
Overall 2.2 (N=112) 3.2 (N=48)  2.5 (N=111) 3.7 (N=48)a  3.3 (N=111)c 3.4 (N=46)c 

Age categories: age category 1: 1–20; age category 2: 21-40; age category 3: 41–60; age category 4: >60. 
aone sample had missing data in PDE4C C5. 
bthere were only two bone samples falling into the age category of 1-20 (both included in the training set) therefore 
calculation of MAE for the testing set was impossible and the value of MAE designated for the training set should be treated 
with caution. 
cone sample from the training set and three from the testing set had missing data in ELOVL2 C2. 

Table 5. Characteristics of the markers in age predictive model for buccal cells. 

CpG  CpG_ID GRCh38 chromosome 
position 

Standardized 
coefficient β t statistic P-value Adjusted R2 

PDE4C C5 - chr19: 18233127 0.351 5.671 1.29×10-7 0.931 
MIR29B2CHG C3 - chr1:207823672 -0.232 -9.472 1.02×10-15 0.955 
ELOVL2 C9a - chr6:11044628 0.244 4.243 4.81×10-5 0.966 
KLF14 C1 cg14361627 chr7:130734355 0.17 5.441 3.54×10-7 0.972 
EDARADD C1 cg09809672 chr1:236394383 -0.098 -3.303 0.001 0.975 
apower transformation for the DNA methylation data for ELOVL2 was applied (y = 0.055*x^1.673) before multiple linear 
regression analysis. 

Table 6. Characteristics of the markers in age predictive model for bones. 

CpG CpG_ID GRCh38 chromosome 
position 

Standardized 
coefficient β t statistic P-value Adjusted R2 

ELOVL2 C2 cg24724428 chr6:11044655 -0.246 -2.758 0.007 0.735 
ELOVL2 C7 - chr6:11044634 0.200 2.606 0.010 0.924 
KLF14 C3 - chr7:130734372 0.498 9.788 2.002×10-16 0.850 
PDE4C C6 cg01481989 chr19:18233131 0.374 4.096 8.349×10-5 0.912 
PDE4C C4 - chr19:18233105 0.245 2.938 0.004 0.916 
ASPA C1 cg02228185 chr17:3476273 -0.142 -3.467 0.001 0.920 
 

Age prediction in blood from methylation data 
obtained with the VISAGE basic tool 
 
To enable age prediction from methylation data 
collected with the previously reported VISAGE basic 
tool for age estimation from blood, comprising a 5-
plex MPS assay [19], we re-trained our 112-sample 
containing blood training set for the five CpGs based 
on data generated with the VISAGE enhanced tool. 
This model predicts age in the training set with an 
accuracy of MAE = 2.7 and in the testing set with 
MAE = 3.8. The lower accuracy achieved with the 5-
markler model compared to the full 6-marker model 
(see above) can be explained by the addition of 

PDE4C in the VISAGE enhanced model. Moreover, 
when performing age prediction modelling using data 
for these five markers obtained from buccal cells and 
bones, we achieved higher errors for buccal cells with 
MAE = 3.9 and 4.3 for training and testing sets, 
respectively, and bones with MAE = 4.7 and 4.0 years 
for training and testing sets, respectively. Notably, the 
buccal and bone models based on the eight DNA 
methylation markers of the VISAGE enhanced tool 
achieved more accurate age prediction than those 
based on the five markers in the VISAGE basic tool 
for blood, lacking the three additional markers, 
covering all three somatic tissues in the VISAGE 
enhanced tool. 
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To check the compatibility of the two VISAGE age 
tools, the VISAGE basic tool for estimating age from 
blood and the VISAGE enhanced tool for estimating 
age from somatic tissues including blood, buccal cells 
and bones, methylation results obtained for the seven 
artificially methylated DNA standards generated with 
the 8-plex assay of the VISAGE enhanced tool were 
compared to those produced with the 5-plex assay of the 
VISAGE basic tool [19]. Both assays showed very 
similar amplification bias for DNA methylation 
quantifications at the overlapping five CpGs 
(Supplementary Figure 4A). When subtracting 
methylation levels obtained with the VISAGE 8-plex 
assay from values obtained for the 5-plex assay, the 5-
plex assay of the VISAGE basic tool appeared to 
produce slightly higher methylation values at the five 
relevant CpG sites (mean differences = 2.4%) than the 
8-plex assay of the VISAGE enhanced tool did. The 
absolute differences between methylation 
quantifications at the same expected DNA methylation 
level were on average 3.0% ± 2.7% across the seven 
DNA standards and markers for the two assays 
(Supplementary Figure 4B). To explore whether these 
differences were significantly different, observed 
methylation values with the 8-plex enhanced tool assay 
were plotted against those of the 5-plex basic tool 
(Supplementary Figure 5). Regression models showed 
no statistically significant performance differences 
between the two assays (Bonferroni corrected P-values: 
ELOVL2 C7: 0.681, KLF14 C1: 1.000, MIR29B2CHG 
C1: 1.000, FHL2 C2: 0.756, TRIM59 C7: 1.000). These 
results indicate that the blood model developed here for 
the five CpGs in the VISAGE basic tool for age 
estimation from blood [19] can be used for estimating 
age in blood, based on data generated with the VISAGE 
basic tool. However, due to the lower errors achieved 
with the blood model based on the 8-plex data, use of 
the VISAGE enhanced tool, including 8-plex data and 
the 6-marker predictive model, is advised to estimate 
age from blood. 
 
Accuracy of developed predictive models in 
predicting age in various human tissues 
 
To assess the performance of the developed prediction 
models in predicting age in human tissues other than 
blood, buccal cells or bones, we also applied the 
VISAGE enhanced age tool to 24 DNA samples 
collected postmortem from various tissues of 22 males 
and 2 females ranging in age from 21 to 73 years at the 
time of death (mean age = 41.0 ± 12.5). Table 7 
summarizes the results of these experiments. This 
limited dataset confirmed that the developed blood 
model can accurately predict age in blood samples of 
deceased individuals (MAE = 3.1). However, the 
prediction accuracy obtained with postmortem cartilage 

and muscle samples estimated with the models 
individually developed for blood, buccal cells and bones 
was unsatisfactory (Table 7). Univariate association 
testing conducted using linear regression in this small 
set of 24 samples showed positive signals of association 
for TRIM59, FHL2, MIR29B2CHG, ELOVL2 and 
PDE4C in muscle and cartilage (data not shown). 
Although we found our eight DNA methylation markers 
were associated with age in the vast majority of CpG 
sites in different tissue types, detailed analysis of the 
DNA methylation-age correlation for particular CpG 
sites showed a different pattern of DNA methylation 
changes in different tissues (Supplementary Figure 6), 
and this underlies the high predictive error observed for 
muscle and cartilage when using the developed models. 
 
DISCUSSION 
 
Although the use of hundreds of CpGs for age 
estimation delivers small prediction errors [2, 7], such 
marker densities are currently impossible in forensic 
applications due to the lack of suitably sensitive DNA 
technology. Smaller sets of DNA methylation age 
markers that can be analyzed with forensically suitable 
technology typically predict age in different tissues with 
different accuracies. To develop a universal epigenetic 
age prediction tool for forensic applications, the 
VISAGE enhanced tool for age estimation from somatic 
tissues represents a significant step forward in age 
estimation for criminal investigations. This tool 
includes a MPS-based assay for eight DNA methylation 
markers (44 CpGs) and three different statistical models 
appropriate for blood, buccal cells and bones as DNA 
sources. The eight markers previously demonstrated age 
correlation in various forensically relevant DNA 
sources [12, 13, 15, 28, 30, 33]. The data we used here 
to train and test the prediction models were generated 
with the developed MPS tool, as method-to-method bias 
prevents the usage of datasets available from the 
literature. 
 
A crucial step in the optimization of the MPS assay of 
the VISAGE enhanced age tool was the development of 
the multiplex PCR for bisulfite converted DNA. The 
severe chemical treatment during bisulfite conversion 
not only leads to DNA degradation and loss, but also 
markedly reduces the complexity of the DNA sequence. 
Consequently, primer specificity is potentially reduced 
and the formation of primer dimers is favored [34]. 
Additionally, most targeted CpGs were located in CpG 
islands (except ASPA and EDARADD) that represent 
regions difficult to amplify. We successfully combined 
ASPA, EDARADD and PDE4C with the five markers of 
the VISAGE basic assay (ELOVL2, MIR29B2CHG, 
KLF14, FHL2, TRIM59) into an 8-plex PCR assay for 
the final VISAGE forensic MPS tool described here. 
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Table 7. Age prediction accuracy in blood, cartilage and muscle samples obtained with the developed models 
for blood, buccal cells and bones. 

DNA source N 
MAE 

Blood age model Buccal cells age model Bone age model 
Blood 24 3.1 6.5 4.9 
Cartilage 24 13.1 12.3 25.8 
Muscle 24 17.1 17.3 13.7 
 

Samples processed with the re-configured assay using 
the MiSeq Reagent Kit v3, which offers increased read 
length and is commercially available in forensic quality, 
yielded high quality sequences and high read depths for 
all eight amplicons. The observed variability between 
read depths at targeted CpGs most likely results from 
differences in primer pair efficiencies that could not be 
fully balanced by adjusting primer concentrations 
(Figure 1A, 1B). Assay performance was confirmed 
with DNA methylation standards that allowed the 
assessment of methylation quantification for robustness 
and linearity. Since the introduction of bisulfite 
conversion for DNA methylation analysis, PCR bias 
towards the unmethylated or methylated template 
molecule has been repeatedly described [35–37], 
highlighting the difficulties in achieving a completely 
methylation-independent amplification. To avoid 
accentuating such bias, mismatch primers were used for 
CpG sites within primer sequences. Although 
methylation quantification of most markers was close to 
the line of identity, we observed a bias towards 
methylated DNA templates (MIR29B2CHG and 
EDARADD) as well as an underestimation of 
methylation levels (ELOVL2). Interestingly, the 
avoidance of a CpG or the inclusion of one or two CpGs 
in the primer sequences did not appear to noticeably 
change the strength of methylation bias. The observed 
PCR bias appeared stable, with minor differences 
between duplicates (mean = 1.9% ± 1.2%), which is 
important for reliability of age prediction. The most 
challenging marker for multiplex development was 
PDE4C, for which a higher variability (4.8% ± 3.7%) 
was observed in comparison to other markers. 
Nevertheless, methylation quantification of samples 
used for predictive modelling showed that PDE4C has a 
wide DNA methylation range and a large effect size, 
which makes it a reliable marker for all three age 
prediction models. Assuming that the range of DNA 
methylation throughout a person’s lifespan determines 
the required minimum accuracy for a marker, the 
highest accuracy would be needed for KLF14. In line 
with this consideration, the methylation quantification 
at optimum DNA input for KLF14 showed the smallest 
differences between duplicates. For further analysis of 
the used DNA methylation controls, we compared 
maximum differences in methylation values obtained at 

the same target and sample. Surprisingly, the highest 
variability was observed at 100% methylation level 
(3.8% ± 2.6%) and not, as expected at 50% methylation. 
As the fully methylated DNA standards represent an 
artificial system, some variability may be inherent in the 
methylation controls. 
 
Like all quantitative methods, DNA methylation analysis 
to attempt chronological age prediction is impacted by 
stochastic effects when the DNA input amount is low 
[38]. This poses a limitation to the application of 
quantitative DNA methylation to forensic samples that 
contain only minute amounts of DNA. Furthermore, the 
DNA is not necessarily equally distributed in such 
tissues, which adds additional variation due to a sampling 
effect. Additionally, DNA loss during bisulfite 
conversion and further stochastic processes during the 
subsequent multiplex PCR step count up to this variation. 
Previous studies suggested that 20 ng to 10 ng DNA 
template used for PCR are required for a reliable 
methylation quantification [38, 39], although a higher 
sensitivity (10 ng DNA input for bisulfite conversion ~2 
ng at PCR) has recently been reported [26]. We tested a 
dilution series of the initial DNA amount used for 
bisulfite conversion to perform a first sensitivity 
evaluation of the VISAGE enhanced tool age assay. 
When comparing mean quantified DNA methylation 
levels to the optimum DNA input, we observed a robust 
quantification down to 20 ng DNA input for most 
markers. According to previous studies investigating 
DNA loss during bisulfite conversion, the DNA amount 
used for PCR would be estimated to be from 8.8 ng (45% 
DNA loss [40]) to 11.8 ng (26% DNA loss [41]), which 
is in agreement with considerations regarding low DNA 
quantities. Results of this sensitivity study clearly 
indicate that methylation quantification of 1 ng samples 
was unreliable with increased differences to the reference 
DNA input as well as an increased variability between 
targeted CpGs of the same amplicon. Additionally, 
samples at 1 ng DNA input showed CpGs that appeared 
completely methylated (e.g. at ELOVL2, PDE4C) or 
unmethylated (e.g. PDE4C), indicating an amplification 
bias towards the methylated or unmethylated DNA 
template during PCR. Overall, the results from 
development and optimization of the VISAGE enhanced 
tool for age estimation from somatic cells showed 
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promising results for future application in routine 
forensic DNA analyses. However, small differences 
between sequencing runs, may affect the final age 
prediction outcome, as recently described by Han et al. 
(2020) [42]. The study reported a shift in DNA 
methylation levels between sequencing runs that led to an 
increased MAE in an independent validation set. The 
extent of such variabilities and the impact on age 
prediction, particularly when analyzing low DNA input 
samples, needs to be further addressed before application 
in real casework. Further validation studies including 
inter-laboratory exercises will bring deeper insight into 
the assay’s robustness, reproducibility and sensitivity. 
 
The developed 8-plex MPS assay was used to collect 
DNA methylation data necessary for the development 
of the three age prediction models. The model for blood 
comprises six CpGs from ELOVL2, MIR29B2CHG, 
KLF14, FHL2, TRIM59 and PDE4C and predicts age 
with MAE of 3.2 years. As expected, ELOVL2 was the 
top ranked marker, which alone explains 95% of 
variation in this age model. Non-linear age-DNA 
methylation correlation was observed in this DMRs, in 
line with other studies [28, 43]. The correlation of DNA 
methylation in ELOVL2 with age in blood was first 
suggested by Garagnani et al. (2012) [44] and was soon 
confirmed in independent studies, making ELOVL2 the 
most important epigenetic age predictor in a range of 
fields including forensics [3, 4, 39, 45]. The five 
remaining predictors include blood markers widely 
validated in studies of different populations from 
Europe and Asia [13–15, 22, 30, 46].  
 
The model for buccal cells includes five CpG sites from 
PDE4C, ELOVL2, MIR29B2CHG, KLF14 and 
EDARADD and predicts age with a MAE of 3.7 years. 
PDE4C was the top ranked marker and alone explained 
93.1% of variation in age. Early studies suggested PDE4C 
as an age predictor in blood and saliva [27, 47] and it was 
rapidly adopted in age prediction models for blood [11, 
28]. In our study, this marker had a higher predictive 
value in buccal cells, which confirms the conclusions of 
the study of Eipel et al. (2016) [31], whose markers 
showed higher correlation with age in saliva and buccal 
cells than in blood. ELOVL2, MIR29B2CHG and KLF14 
come from the five best predictors for blood selected by 
the study of Zbieć-Piekarska [12], which had been shown 
to be suitable for predicting age in saliva and buccal cells 
in Asian populations [15]. The buccal cell tissue marker 
EDARADD, was included in the first age prediction 
algorithm developed for saliva [27] and replicated in other 
studies that investigated blood, saliva and buccal cells [28, 
48–51]. 
 
Furthermore, we present here an age prediction model 
for bones which is based on only six CpGs from four 

DMRs in ELOVL2, KLF14, PDE4C and ASPA. This 
model predicts age with a relatively small error, with a 
MAE of 3.4 years in the testing set. Age prediction 
attempts using epigenetic markers in bone material are 
rare. Prediction models reported for teeth were based 
on a relatively small number of samples and found 
ELOVL2, PDE4C, EDARADD, FHL2 and PENK to be 
useful predictors of age in teeth [16, 18, 28]. Naue et 
al. (2018) attempted to predict age in various tissues 
including bone and found DNA methylation at 
ELOVL2, KLF14 and TRIM59 to be correlated with age 
in bones. Other suggested age predictors for bones 
include DDO, F5, LDB2, NKIRAS2, RPA2 and 
ZYG11A [13]. In a recent paper Lee et al. (2020) 
reported TMEM51 and EPHA6 as new age markers for 
bones identified from Infinium MethylationEPIC 
BeadChip array data. This study also confirmed age 
correlation in bones for ELOVL2, FHL2, KLF14 and 
TRIM59 [17]. 
 
Our study shows that the eight CpGs selected for 
predicting age in somatic cells are a robust set of 
markers for developing accurate age prediction 
algorithms for DNA extracted from blood, buccal cells 
and bones. In particular, PDE4C, ELOVL2 and KLF14 
are used in all models and various combinations of just 
eight markers can predict age in the three tissues with 
effective accuracy with a MAE of 3.2 - 3.7 years. 
 
In agreement with other studies, an increased MAE in 
age predictions of older individuals was observed in 
blood and buccal cells, which can be explained by a 
combination of genetic and environmental factors 
influencing the individual rate of aging [6, 43, 52]. 
Therefore, we calculated the MAE for different age 
groups, which allows to account for the corresponding 
age category in the interpretation of real casework. In 
addition, the MAE range can be provided along with the 
predicted age (e.g. from 2.2 to 5.5 years for blood). 
 
Our study confirms the importance of ELOVL2 and 
PDE4C for epigenetic age prediction and provides 
further evidence that MIR29B2CHG (ranked 3rd in the 
blood model and 2nd in the buccal cell model), is a 
valuable age predictor in forensics. In the first two 
markers, hypermethylation with age is observed, and in 
the third hypomethylation. All three are characterized 
by a wide range of DNA methylation levels during an 
individual’s lifespan (50-70%). KLF14 is characterized 
by the lowest range of DNA methylation over a lifespan 
but this marker is consistently suitable in all three 
predictive models [21, 51, 53]. ASPA was chosen only 
for use as a bone age predictor in our study, while FHL2 
and TRIM59 were selected exclusively as blood age 
predictors, although correlation with other tissue types 
has been demonstrated for these markers. Our study 
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aimed to select a universal set of DMSs for epigenetic 
age prediction in various somatic tissues, but since the 
pattern of DNA methylation change differed in various 
cell types tested, the DNA methylation data collected 
for individual tissues had to be incorporated into 
separate training sets for tailored prediction models. In 
addition, our pilot study of postmortem samples, which 
analyzed tissues from 24 deceased persons, indicated 
the models developed did not predict cartilage and 
muscle age correctly. 
 
In summary, the study outlined here presents a complete 
tool for estimating a person’s age from DNA in forensic 
applications that deal with low amounts of DNA from 
the three forensically relevant tissue types of blood, 
buccal cells and bones. The VISAGE enhanced tool for 
age estimation in somatic tissues comprises a single 
bisulfite MPS assay targeting 44 CpGs from eight 
carefully selected DNA methylation markers and three 
separate predictive models for blood, buccal cells and 
bones. The MPS assay provided reliable and 
reproducible methylation quantifications, enabling 
accurate age prediction in samples down to a minimum 
of 20 ng of DNA. The three individual tissue models 
provide a good balance of marker number and accuracy 
given the capacity limitations of the DNA methylation 
measurement technology used. Future work could focus 
on increasing the model testing datasets to investigate 
the reliability of reported error estimates for the three 
models. It will also be useful to gauge the performance 
of the age prediction models for data produced using the 
VISAGE enhanced tool with additional forensically 
relevant somatic tissues. Notably, DNA methylation 
variation in non-somatic tissues, such as semen, is 
known to differ from that in somatic tissues; the 
development of an epigenetic tool for age estimation in 
semen is currently in progress by the VISAGE 
Consortium. 
 
MATERIALS AND METHODS 
 
Selection of DNA methylation markers for age 
prediction in somatic tissues 
 
Five age markers previously described in Zbieć-
Piekarska et al. (2015) [12] were used as the basis for 
developing the VISAGE enhanced tool for age 
estimation of forensic DNA from somatic cells. We 
performed a comprehensive literature search and 
extended the original marker set comprising ELOVL2, 
MIR29B2CHG, TRIM59, KLF14 and FHL2 with the 
three additional markers of EDARADD, PDE4C and 
ASPA. It has been shown in multiple studies that these 
three markers have considerable capacity to further 
improve prediction of age in buccal cells/saliva and 
have been demonstrated to correlate with age in other 

somatic cells including bones [11, 12, 27–31]. The eight 
marker combination selected for inclusion in the 
expanded VISAGE MPS multiplex comprised a total of 
44 individual CpG sites (Supplementary Table 1). 
 
Assay design and development 
 
Multiplex PCR 
Development of the multiplex PCR assay for targeted 
bisulfite sequencing used primer designs established for 
the VISAGE basic test [19] (ELOVL2, KLF14, TRIM59, 
FHL2 and MIR29B2CHG) with primers for the three 
additional markers (PDE4C, ASPA and EDARADD), 
either newly designed using MethPrimer [54] and 
PrimerSuite [55] or gathered from the literature. When 
CpG sites within the primer sequences were 
unavoidable, a deliberate mismatch was introduced. In 
the specific cases of PDE4C and MIR29B2CHG, 
degenerate primers carrying a Y at CpG positions were 
also designed and tested, but no increase in amplicon 
yield was observed (data not shown) and consequently, 
mismatch primers were utilized in the final multiplex 
PCR. All newly tested primer pairs are listed in 
Supplementary Table 3. The formation of non-specific 
PCR products and primer dimers was evaluated in silico 
using BiSearch [34] and AutoDimer [56]. Primer 
sequences and final multiplex PCR concentrations are 
listed in Table 1. 
 
PCR optimizations were performed with DNA 
extracted from 10 ml EDTA venous whole blood from 
three samples using the Blood Maxi Kit (Qiagen, 
Hilden, Germany) and quantified by real-time 
quantitative PCR [57]. Blood samples either derived 
from one individual sampled within this study under 
written informed consent (approved by the ethics 
commission of the Medical University of Innsbruck 
under study number 1086/2017) or were purchased 
from Biotrend (Köln, Germany). Bisulfite conversion 
was performed with 200 ng extracted DNA using the 
Premium Bisulfite Kit (Diagenode, Ougrée, Belgium) 
according to the manufacturer’s protocol. An 
additional dry spin before elution was performed to 
prevent ethanol carry-over into the PCR. A total of 2 
µl converted DNA was used for primer tests with the 
Multiplex PCR Kit (Qiagen) in 25 µl assay volume. 
Annealing temperature gradient PCRs were performed 
to optimise the singleplex reactions to test primers 
targeting ASPA, PDE4C and EDARADD as well as 
with the entire multiplex system. Post-PCR 
purification was performed with 1.5X volume of 
AMPure XP beads (Beckman Coulter, Brea, 
California, USA) and 15 µl low TE (10 mM Tris, 0.1 
mM EDTA, pH 8) were used for elution. PCR 
products were evaluated for amplicon yield and size on 
the Bioanalyzer using the DNA 1000 Kit (both Agilent 
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Technologies, Santa Clara, CA, USA). The final 
multiplex PCRs were carried out using the 
thermocycler steps: initial denaturation at 95° C for 15 
min; 38 cycles of 95° C for 10 s, 57° C for 30 s, 72° C 
for 30 s; final elongation at 72° C for 10 min. 
 
PCR products were also assessed with Sanger 
sequencing to verify all amplicons before massively 
parallel sequencing as described in [58]. In brief, 
reactions were carried out using BigDye Terminator 
v1.1 Cycle Sequencing kit (Thermo Fisher Scientific - 
TFS, Waltham, MA, USA) in 10 µl reaction volumes 
and 0.3 µM primer (listed in Table 1). The thermal 
cycling comprised steps: 96° C for 1 min; 25 cycles of 
95° C for 15 s, 50° C for 5 s and 60° C for 4 min. Cycle 
sequencing products were purified using centrifugation 
over Sephadex G-100 columns (Amersham, Little 
Chalfont, UK). Electrophoresis of sequencing products 
was performed on an ABI3500 instrument (TFS) using 
standard settings. Raw sequences were analysed with 
the Sequencer 5.1 (Gene Codes Corporation, Ann 
Arbor, MI, USA) software and assembled with an in-
house prepared reference (bisuflite converted reference 
for targeted amplicons). 
 
Massively parallel sequencing and data analysis 
All PCR products were quantified using the Qubit 
dsDNA HS Assay Kit (TFS) for library preparation. All 
protocol steps were performed in half volume with 50 ng 
purified PCR products using the KAPA Hyper Prep Kit 
with KAPA Library Amplification Primer Mix and 
KAPA SI Adapter Kit Set A+B at 15 µM (all Roche, 
Basel, Switzerland), following the manufacturer’s 
instructions. Post-ligation and post-amplification clean-
ups were performed with 0.8X and 1X AMPure XP 
beads, respectively. Libraries were amplified with 5 
PCR cycles. Purified libraries were quantified with the 
KAPA Library Quantification Complete kit (Roche) and 
evaluated using the DNA 1000 Kit on the Bioanalyzer. 
For sequencing, libraries (N = 24 per run) were pooled 
equimolarly (4 nM) and processed according to the 
MiSeq System Denature and Dilute Libraries Guide, 
Protocol A (Document #15039740 v10; Illumina, San 
Diego, CA, USA). All libraries were diluted to 7 pM and 
spiked with 2 µl 20 pM PhiX control v3. For assay 
optimization, sequencing was performed with the MiSeq 
Reagent Kit v2 2x 150 cycles or the MiSeq Reagent Kit 
v3 2x 200 cycles (both Verogen, San Diego, CA, USA). 
 
Assay re-optimization (final design) 
In order to balance amplicon yields, PDE4C primers 
were tested at increasing concentrations (0.4 µM, 0.6 
µM, 0.8 µM, 1 µM). Multiplex PCR was performed 
with 8 µl eluate from bisulfite conversion of 200 ng 
DNA, followed by library preparation according to the 
protocol described above. Final libraries were evaluated 

on the Bioanalyzer using the DNA 1000 Kit 
(Supplementary Figure 2). The newly optimized 
multiplex PCR was tested using the MiSeq Reagent v3 
kit, which allows for longer read lengths (v3: 600 cycles 
versus v2: 300 cycles) and provides higher output (v3: 
13.2 to 15 GB versus v2: 4.5 to 5.1 GB). 
 
Performance evaluation with DNA standards of 
known methylation state 
Assay evaluation was performed with artificially 
methylated DNA standards, which were prepared using 
the human WGA methylated and non-methylated DNA 
Set (Zymo Research, Irvine, CA, USA). Fully 
methylated and non-methylated control DNA samples 
were diluted to 20 ng/µl in low TE and quantified with 
the Qubit dsDNA HS Assay Kit (TFS). These two 
control DNA dilutions were mixed at different volume 
proportions to achieve 5%, 10%, 25%, 50% and 75% 
methylated DNA standards. DNA inputs stated for 
assay evaluation refer to the DNA amount used for 
bisulfite conversion. The optimum DNA input (200 ng) 
is indicated by the manufacturer of the Premium 
bisulfite kit. The whole eluate from bisulfite conversion 
could be used for the multiplex PCR to increase 
sensitivity however, to ensure equal volumes within the 
performance evaluation, 8 µl of eluate were used for 
amplification. DNA methylation standards at optimum 
input were used to test the first assay design (duplicates 
of 0%, 25%, 50%, 75% and 100% methylated DNA 
standards) as well as the re-optimized protocol (design 
2; duplicates of 5%, 10%, 25%, 50%, 75% methylated 
DNA standards and one replicate of 0% and 100% 
methylated control). Sensitivity assessment of the re-
optimized protocol was performed with 200 ng, 100 ng, 
50 ng, 20 ng, 10 ng and 1 ng DNA input of a 50% 
methylated DNA standard. Samples were processed 
together with negative template controls (NTC, PCR 
grade water) for all steps with two NTCs selected for 
sequencing. Sequencing baseline noise was below the 
1,000 reads threshold at all amplicons for NTC-1 (mean 
= 169.9 ± 89.1 paired reads). NTC-2 (mean = 747.5 ± 
972 paired reads) showed higher read depth at KLF14 
C1 and C2 (mean = 5702.5 paired reads) and TRIM59 
C1 to C3 and C8 (1,064 paired reads). Inspection in 
IGV showed misaligned reads at KLF14 causing high 
read depth (Supplementary Figure 3A), whereas a low 
level of contamination at TRIM59 cannot be fully 
excluded. However, read depth was very low compared 
to the overall read depth at this amplicon (overall mean 
= 141,623.1 ± 33,757.9 paired reads). 
 
Development of predictive models 
 
Samples used in predictive modelling 
Peripheral blood was collected in EDTA-tubes from 160 
unrelated, healthy individuals: 80 males and 80 females in 
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the age range 1–75 years (mean 40.2 ± 22.7) under two 
research projects AEVITAS (DOBR/0002/R/ID1/2012/) 
and NEXT (DOB-BIO7/17/01/2015). These sampling 
regimes were approved by the Commission of Bioethics 
at the Institute of Cardiology in Warsaw (IK-NP-0021-
79/1396/13) and the Ethics Committee of the Jagiellonian 
University in Krakow (KBET/122/6120/11/2016); plus 
1072.6120.24.2017 for retrospective analysis of samples. 
In all cases informed consent was provided by participants 
or their legal representatives (parents). Buccal swabs from 
160 unrelated, healthy individuals: 80 males and 80 
females in the age range 2–80 years (mean 40.6 ± 22.8) 
were obtained from a previous EUROFORGEN project 
(7PR UE, grant no 28548) with the consent of the 
Commission on Bioethics of the Regional Board of 
Medical Doctors in Krakow for retrospective analysis of 
samples (48 KBL/OIL/2008; OIL/KBL/23/2017). 
Samples were divided into training and testing sets for 
statistical analyses as presented in Table 2. A set of 161 
bone samples (occipital bone or femoral shaft): 129 males 
and 32 females in the age range 19–93 years (mean 46.1 ± 
14.8) was collected during routine autopsies, performed 
by a forensic medical examiner at the Department of 
Forensic Medicine, Medical College of Jagiellonian 
University in Krakow. In addition, blood, muscle (rectus 
abdominis muscle) and costal cartilage were collected 
from 24 individuals. The samples were stored at -80° C 
until further processing. The time from death to autopsy 
ranged from 1 to 5 days. The study was approved by the 
ethics committee of the Jagiellonian University in 
Krakow, Poland (KBET/122.6120.86.2017). 
 
DNA extraction and quantification 
DNA from blood was extracted using a modified salting 
out procedure [59], PrepFiler Express™ Forensic DNA 
Extraction Kit (TFS) or standard phenol-chloroform 
method. Previously used DNA extracts were stored 
frozen, at 4° C or room temperature (the percentage of 
methylation detected from different storage conditions 
was checked randomly and compared with previous 
Pyrosequencing results) [12]. DNA from buccal swabs 
and postmortem samples including bones was extracted 
using a silica-based method with Sherlock AX kit (A&A 
Biotechnology, Gdansk, Poland). Bone surfaces were 
cleared of soft tissue with a sterile scalpel and the entire 
exterior was abraded with a grindstone attached to a 
Dremel rotary tool to remove potential contaminants. 
Before the extraction bone pieces (~1cm3) were treated 
with 15% bleach for 1min, repeatedly shaken with 100% 
ethanol and distilled water (dH2O), and finally subjected 
to UV irradiation. The thoroughly dried samples were 
pulverized using a FreezerMill 6750 apparatus (Spex 
CertiPrep, NJ, USA) and EDTA decalcification applied 
to each of the samples. DNA concentration was 
measured in all samples using Qubit dsDNA HS Assay 
Kit with the Qubit instrument. 

Bisulfite sequencing of samples using the VISAGE 
assay 
DNA from blood was subjected to bisulfite conversion 
(BC) using the Qiagen 96-well bisulfite conversion kit 
(Qiagen, Hilden, Germany). In most blood samples, 
2,000 ng of DNA was used, and elution was made in 
100 µl of elution buffer. In 27 samples with lower DNA 
concentration (400 ng or less) the elution volume was 
reduced to 40 µl. Bisulfite conversion of DNA extracted 
from buccal swab samples and the 233 postmortem 
samples (161 bone samples and 72 tissues samples) was 
conducted with the EZ DNA Methylation-Direct Kit 
(Zymo Research). In all swab samples, DNA input for 
bisulfite conversion was 200 ng in an elution volume of 
10 µl. In samples collected postmortem, the DNA input 
for BC was 500 ng and the elution volume was 25 µl. 
DNA methylation data was collected for all samples 
using the VISAGE assay. Each PCR reaction contained 
5 µl bisulfite converted DNA except for samples with 
lower DNA concentration when 8 or 10 µl BC DNA 
were used for the PCR amplification. MPS sequencing 
was performed on the Illumina MiSeq FGx instrument 
with the MiSeq FGx ForenSeq Reagent Kit, MiSeq 
Reagent Kit v2 300 cycles and MiSeq Reagent Kits 
Nano 300 cycles with 5% PhiX Control (except for the 
first experimental run, which used 1% PhiX Control). 
The final DNA pool was diluted to 7-12 pM, depending 
on the run and tissue type. Pools were made from 40 to 
74 libraries (including 0% and 100% DNA methylation 
controls) combined. The MiSeq instrument was set to 
perform paired-end sequencing of 151 reads in both 
directions and to complete the data collection, seven 
main and five additional sequencing runs were 
performed (Supplementary Table 4). 
 
Data analysis 
 
MPS data analysis 
Alignment was carried out relative to a custom 
reference genome containing only the targeted 
sequences (Supplementary Table 5) using an adapted 
Burrows-Wheeler alignment for bisulfite converted 
DNA sequences – bwa-meth [60]. An additional quality 
control step was performed on the raw data (fastq) for 
the samples used for predictive modelling, which was 
reviewed in detail with FastQC software [61]. Bam file 
creation, sorting, filtering and indexing was performed 
with Samtools [62]. Alignments of all samples were 
inspected using the Integrative Genomics Viewer (IGV) 
[63]. Total numbers of read information was extracted 
from amplicon positions using bam-readcount with 
minimum mapping quality and minimum base quality 
thresholds set to 30 [https://github.com/genome/bam-
readcount]. At target CpG sites, obtained C reads were 
divided by the sum of C reads and T reads to calculate 
beta values. Observed methylation values refer to 

https://github.com/genome/bam-readcount
https://github.com/genome/bam-readcount
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percentage beta values. Bisulfite conversion efficiency 
of samples was estimated by calculating the percentage 
of mean reversed beta values from all non-CpG-Cs (T 
reads divided by the sum of C reads and T reads). Total 
coverage refers to the sum of the number of reads per 
amplicon (one CpG site per amplicon was selected). 
Read depth was normalized by dividing the read depth 
at target positions by the total coverage. Only CpG sites 
with the minimum number of 1,000 reads were accepted 
for further analyses including the prediction modelling 
that was then applied to the data. For statistical analyses 
Microsoft Excel and R [https://www.r-project.org/] [64] 
were used. 
 
Statistical analysis and prediction modelling 
The correlation between age and DNA methylation 
levels at the 44 investigated CpGs in eight genes was 
analyzed in a training set of 112 carefully selected DNA 
samples from blood, 112 samples from buccal cells and 
112 samples from bones (Table 2). The effect size of 
particular loci was defined with standardized regression 
coefficients (β). The linearity of DNA methylation-age 
correlation was verified for all the tested CpGs. A clear 
non-linear pattern of correlation was noted for ELOVL2, 
which is in agreement with previous studies [28, 43] 
and therefore, DNA methylation data for this marker 
were power transformed before multivariate linear 
regression analysis was applied. The proportion of age 
variance explained by individual predictors and their 
cumulative impact was assessed based on the 
calculation of R2 coefficients. The same datasets of 112 
blood, 111 buccal cells samples and 111 bone samples 
were used to develop linear regression age prediction 
models. The selection of a set of optimal markers was 
performed by stepwise linear regression with 
probability of F statistic, based on a statistical test of the 
improvement in model error, used as a criterion for 
predictors entry/removal. The developed models were 
further tested using an independent set of 48 blood 
samples, 48 buccal cells samples and 49 bone samples 
(Table 2). The potential applicability of the developed 
models to predict age in some other human cell types 
was verified in a study involving three tissue types 
collected from 24 deceased individuals (aged 21-73). 
This experiment involved blood, cartilage and muscle 
samples. All the analyses were conducted using PS 
IMAGO PRO 5.1 software (IBM SPSS Statistics 25). 
 
DNA methylation data comparison to the VISAGE 
basic assay 
Data generated using the VISAGE basic prototype tool 
from 0%, 5%, 10%, 25%, 50%, 75% and 100% 
methylated DNA standards (Run1; 200 ng DNA input 
to bisulfite conversion using the Premium bisulfite kit 
[19]) was re-analyzed with bam-readcount. The mean 
methylation values from duplicates were used to 

calculate the differences between the two assays and to 
test for statistically significant differences between the 
two assays. Statistical testing was carried out in R using 
the “linearHypothesis” function implemented in the 
package “cars”. To control for the family-wise error in 
multiple hypothesis testing, P-values were adjusted 
using the Bonferroni method. 
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Appendix 
 
Centres and investigators of the VISible Attributes 
through GEnomics (VISAGE) Consortium 
(http://www.visage-h2020.eu/): 
 
• Erasmus University Medical Center Rotterdam 

(Netherlands): Manfred Kayser, Vivian Kalamara, 
Arwin Ralf, Athina Vidaki. 

• Jagiellonian University (Poland): Wojciech 
Branicki, Ewelina Pośpiech, Aleksandra Pisarek.  

• Universidade de Santiago de Compostela (Spain): 
Ángel Carracedo, Maria Victoria Lareu, 
Christopher Phillips, Ana Freire-Aradas, Ana 
Mosquera-Miguel, María de la Puente. 

• Medizinische Universität Innsbruck (Austria): 
Walther Parson, Catarina Xavier, Antonia 
Heidegger, Harald Niederstätter. 

• Universität zu Köln (Germany): Michael Nothnagel, 
Maria-Alexandra Katsara, Tarek Khellaf. 

• King's College London (United Kingdom): Barbara 
Prainsack, Gabrielle Samuel. 

• Klinikum der Universität zu Köln (Germany): Peter 
M. Schneider, Theresa E. Gross, Jan Fleckhaus. 

• Bundeskriminalamt (Germany): Ingo Bastisch, 
Nathalie Schury, Jens Teodoridis, Martina 
Unterländer. 

• Institut National De Police Scientifique (France): 
François-Xavier Laurent, Caroline Bouakaze, Yann 
Chantrel, Anna Delest, Clémence Hollard, Ayhan 
Ulus, Julien Vannier. 

• Netherlands Forensic Institute (Netherlands): Titia 
Sijen, Kris van der Gaag, Marina Ventayol-Garcia. 

• National Forensic Centre, Swedish Police Authority 
(Sweden): Johannes Hedman, Klara Junker, Maja 
Sidstedt. 

• Metropolitan Police Service, London (United 
Kingdom): Shazia Khan, Carole E. Ames, Andrew 
Revoir. 

• Centralne Laboratorium Kryminalistyczne Policji 
(Poland): Magdalena Spólnicka, Ewa Kartasińska, 
Anna Woźniak.  

 
  

http://www.visage-h2020.eu/
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Supplementary Figures 

 
 

 

 
 

Supplementary Figure 1. Measured versus expected methylation values as obtained for duplicates that were prepared 
according to the first assay design. The dashed line indicates the line of identity (intercept = 0, slope = 1). 
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Supplementary Figure 2. Bioanalyzer electropherograms (DNA 1000 kit) show final libraries after multiplex PCR with increasing 
PDE4C concentrations: (A) 0.4 µM, (B) 0.6 µM, (C) 0.8 µM, (D) 1 µM. The PDE4C amplicon is marked with an arrow. 



www.aging-us.com 24 AGING 

 
 

Supplementary Figure 3. (A) IGV capture of alignments for NTC-2 KLF14 amplicon. Alignments are viewed as pairs and shown in squished 
mode. Target CpG sites are indicated by arrows. (B) IGV capture of alignments for the low quantity 10 ng sample. Alignments at PDE4C are 
viewed as pairs and shown in squished mode. Target CpG sites are indicated by arrows. 
 

 
 

Supplementary Figure 4. (A) Methylation values obtained from seven differentially methylated DNA standards processed with the basic or 
final VISAGE prototype tools. (B) Absolute difference between mean quantifications obtained for the two assays. 
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Supplementary Figure 5. Assuming that methylation quantification of the DNA methylation standards using the basic tool or 
the final tool do not differ significantly, the obtained values should be close to the line of identity (plotted line; intercept = 0, 
slope = 1). This was tested by comparing the linear regression model based on the experimental data of each marker with the line    of 
identity (regression line is indicated by the dashed, blue line). Results failed to indicate at the 5% Type−I error level a statistically significantly 
superior performance of the empirical   regression model to the line of identity for all five markers (Bonferroni corrected P−values:  
ELOVL2_C7: 0.681, KLF14_C1: 1.000, MIR29B2CHG_C1: 1.000, FHL2_C2: 0.756, TRIM59_C7: 1.000). 
 

 
 

Supplementary Figure 6. Correlation between DNA methylation and chronological age in 3 tissue types collected from 24 
deceased individuals. 
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Supplementary Tables 
 
Please browse Full Text version to see the data of Supplementary Tables 1, 3, 5. 
 
Supplementary Table 1. Characteristics of all the CpG sites analysed in the study and the results of univariate 
association testing for age and CpG sites analysed in training sets for blood (N=112), buccal cells (N=112) and 
bones (N=112). 

 
Supplementary Table 2. Average difference of measured methylation values between duplicates (5% to 75% 
methylated DNA standards; N = 5) obtained for all CpG sites per marker. 

Marker CpGs (N) Mean SD Median Minimum Maximum 
ASPA 1 1.39 1.59 0.69 0.13 3.81 
EDARADD 2 1.26 0.78 1.68 0.05 2.21 
ELOVL2 9 1.23 0.76 1.03 0.02 2.89 
FHL2 10 1.26 0.82 1.18 0.14 2.79 
KLF14 4 0.81 0.98 0.36 0.01 2.9 
MIR29B2CHG 3 3.01 2.45 2.62 0.13 7.46 
PDE4C 7 4.76 3.69 3.94 0.47 12 
TRIM59 8 1.74 0.6 1.74 0.56 2.85 
overall  1.93 1.23 1.33 0.81 4.76 
 

Supplementary Table 3. Primer sequences tested for multiplex PCR optimizations. 

 
Supplementary Table 4. List of sequencing runs for data collecting, used Illumina® MiSeq Kits, library 
concentration, % PhiX Control and number of pooled samples (including methylation standards 0% and 100%). 

Run Run name Used kit Lib. conc. [pM] % PhiX control No. samples 
1 Swab1 MiSeq Reagent Kit Micro v2 300 cycles 7 1 40 
2 Blood1 MiSeq FGx v3 600 cycles 7 5 40 
3 Blood2.1 MiSeq FGx v3 600 cycles 9 5 62 
4 Blood2.2 * MiSeq FGx v3 600 cycles 11 5 62 
5 Blood3 MiSeq FGx v3 600 cycles 12 5 67 
6 Swab2 MiSeq FGx v3 600 cycles 12 5 62 
7 Swab3 MiSeq FGx v3 600 cycles 12 5 63 
8 Swab+blood* MiSeq Reagent Kit Nano v2 300 cycles 10 5 8 
9 Swab+blood* MiSeq Reagent Kit Nano v2 300 cycles 10 5 5 
10 Tissue MiSeq Reagent Kit v2 300 cycles 10 5 72 
11 Bones1+blood* MiSeq Reagent Kit v2 300 cycles 10 5 64 
12 Bones2 MiSeq FGx v3 600 cycles 12 5 72 
13 Bones3+blood* MiSeq FGx v3 600 cycles 12 5 67 

*additional runs for some samples due to missing data. 

Supplementary Table 5. Sequences used for FASTA file preparation (GRCh38). 


