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Steinmann & Cohn 1973 — Nobel Prize 2011

AG capture, processing and maturation




DENDRITIC CELLS — BRIDGE BETWEEN INNATE AND ADAPTIVE IMMUNITY

Immature DC Mature DC

Inflammatory

stimuli
CD80/CD86 low high
MHC class Il low high
CD83 no high
C-type lectins (eg.DC-SIGN) high low
Phagocytosis high low

CCL19(MIP-3f), CCL21(SLC)

CCR7 low ——— high

Migration to LTs
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PROFESSIONAL AGP CELLS
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DC LOCALIZATION
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TABLE 6-3 The Major Subpopulations of Dendritic Cells

Feature Conventional (Myeloid) Dendritic Cells Plasmacytoid Dendritic Cells
Surface markers CD11c high CD11¢c low
CD11b high CD11b negative
B220 high
Growth factors for in vitro derivation GM-CSF, Fit3-ligand FIt3-ligand
Expression of Toll-like receptors (TLRs) TLRs 4, 5, 8 high TLRs 7, 9 high
Majar cytokines produced TNF, IL-6 Type | interferons
Postulated major functions Induction of T cell responses against Innate immunity and induction of T cell responses

most antigens

against viruses

Other subsets of dendritic cells have been described on the basis of the expression of various surface markers (such as CD4, CD8, and CD11b} or migration from
tissue sites (Langerhans-type dendritic cells from epithelia and interstitial dendritic cells from tissues). Note that all DCs express class [| MHC molecules. Some
authorities also refer to monocyte-derived dendritic cells, which can be generated from blood monocytes cultured with various cytokines and may develop in vivo

during inflammatory reactions.




DENDRITIC CELLS AND OTHER INNATE IMMUNE CELLS EXPRESS PRR; RECOGNIZING PATHOGENS
» PRRs: encoded in genome, not subject to rearrangement or variation

» PRRs: molecular sensors of infection on critical immune cells, i.e. DCs and macrophages

» but also other cells, i.e. epithelial cells, coming in contact with pathogens express subsets of PRRs

How can PRRs recognize pathogens from diverse families with diversive biology and
patterns of infection in the absence of functional re-arrangement?



PRR;

How can PRRs recognize pathogens from diverse families with diverse biology and patterns
of infection in the absence of functional re-arrangement?
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Innate IS recognizes PAMPs (pathogen-associated
molecular patterns) > components common to
many pathogens
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PRR;

How can PRRs recognize pathogens from diverse families with diverse biology and patterns
of infection in the absence of functional re-arrangement?
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Extensive receptor cross-talk and communication between the
signaling pathways > coordinated response to pathogen infection
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PRR.> OVERVIEW OF INNATE SIGNALING AND COMPONENTS

e Lipoproteins, ssRNA, dsRNA, CpG DNA, bacterial flagellin

e Members of TLR, NLR, RLR and CLR families

Pattern
recognition

* MyD88, TRIF, RIP2, CARD9, IPS1

Signalling
complex/adaptor proteins

* NFkB, IRFs, AP1

Pro-inflammatory
transcription factors

e Cyto- and Chemokines, TNF, IL-1, IL-6, type | IFN > classic signs of
... infection: redness, heat, swelling, pain

antiviral response




PRR FAMILIES




CLRs — C-type lectin receptors
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comprise large family of PRRs

bind to carbohydrates in a calcium-dependent manner

based on molecular structures > 3 types of CLRs: Type |
(DEC-205, MMR), Type Il (dectins, mincle, DC-SIGN), soluble
(MBL)

involved in fungal recognition and modulation of the innate
immune response

expressed by most cell types including macrophages and
dendritic cells (DCs) > internalize glycoproteins and microbes
to clear and present Ag to T lymphocytes



DC - ANTIGENPRESENTATION

» AGP via MHC molecules
e 2 types: MHC-I and MHC-II
* MHC-I expressed on all nucleated cells

 MHC-I present self and non-self Ags on the surface

* MHC-Il only expressed on professional APCs, e.g. DCs

MHC-
molecule

MHC-II
molecule

Abbas, Lichtmann and Pillai. Cellular and Molecular Immunology, 7th edition



ANTIGENPRESENTATION - MHC |

e MHC-I facilitate "VIEW inside cells’

e Self and non-self antigens from inside cells are ligated to MHC-I| and
are presented on the surface to e.g. NK cells or CD8* T cells

NK cell

Virus-infected -
cell Killing of
infected cells

Abbas, Lichtmann and Pillai. Cellular and Molecular Immunology, 7th edition



ANTIGENPRESENTATION - MHC |
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ANTIGENPRESENTATION - MHC |

» Course of pathogen recognition via MHC |
e Pathogens (cytosolic proteins) INSIDE cells

e Pathogens processed by proteosome — Ags formed

* Ags transported to MHC-| via TAP
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Abbas, Lichtmann and Pillai. Cellular and Molecular Immunology, 7th edition



ANTIGENPRESENTATION - MHC |

» Course of pathogen recognition via MHC |

* Agsloaded onto MHC-I (peptide-MHC association)

* Ag-MHC-I complexes transported to the cell surface by vesicles
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ANTIGENPRESENTATION - MHC |

® ® © ® S

| — — —

" Production of ﬁProteonticj ﬁTransport of Assembly of Surface expression
proteins in degradation peptides from peptide-class | of peptide-class |
the cytosol of proteins  cytosolto ER  complexes in ER complexes

o J = = = "1 [ J R

* X%ﬁ.g'sm Synthesized
viral protein Exocytic
vesicle

CD8+
cytotoxic T
lymphocyte

Ubiquitinated N
protein " N>

#* ) /# S
)"y

Protein antigen
=) of ingested microbe
transported to cytosol

Abbas, Lichtmann and Pillai. Cellular and Molecular Immunology, 7th edition



ANTIGENPRESENTATION - MHC I

Surface of professional AGP cells

Also presentation of proteins, but not from INSIDE!

Pathogens are recognized by AGP cells and internalized

AGP cells process pathogens in small fragments > Ags

Once stimulated by up-take DCs migrate to the proximate lymph node
and present Ags to naive T cells >
Induction of adaptive immunity



ANTIGENPRESENTATION - MHC I
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ANTIGENPRESENTATION - MHC I

> Course of MHC Il AGP

e Extracellular pathogens processed via MHC Il
* Up-take of pathogens by phagocytosis

e Ag packing into vesicles and fusion with MHC class Il vesicles

* Presentation at DC surface
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ANTIGENPRESENTATION - MHC I
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INNATE IMMUNITY TO VIRUSES

RECOGNITION OF / INNATE IMMUNE RESPONSE TO HIV-1

_ . . . HIV-1 — infects vital cells in IS (in
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HIV-1 LIFE CYCLE
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WHY/HOW is HIV-1 able to evade efficient
AGP from DCs and develop chronic disease?
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Role of DCs in HIV-1 pathogenesis
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HIV-1 Transfer from iDCs/mDCs
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nature
immunology

HIV-1 blocks the signaling adaptor MAVS to evade antiviral host
defense after sensing of abortive HIV-1 RNA by the host helicase DDX3

Sonja | Gringhuis, Nina Hertoghs, Tanja M Kaptein, Esther M Zijlstra-Willems, Ramin Sarrami-Forooshani, Joris K
Sprokholt, Nienke H van Teijlingen, Neeltje A Kootstra, Thijs Booiman, Karel A van Dort, Carla M S Ribeiro, Agata
Drewniak & Teunis B H Geijtenbeek

The mechanisms by which human immunodeficiency virus 1 (HIV-1) avoids immune surveillance by
dendritic cells (DCs), and thereby prevents protective adaptive immune responses, remain poorly
understood. Here we showed that HIV-1 actively arrested antiviral immune responses by DCs, which
contributed to efficient HIV-1 replication in infected individuals. We identified the RNA helicase DDX3 as an
HIV-1 sensor that bound abortive HIV-1 RNA after HIV-1 infection and induced DC maturation and type |
interferon responses via the signaling adaptor MAVS. Notably, HIV-1 recognition by the C-type lectin
receptor DC-SIGN activated the mitotic kinase PLK1, which suppressed signaling downstream of MAVS,
thereby interfering with intrinsic host defense during HIV-1 infection. Finally, we showed that PLK1-
mediated suppression of DDX3—MAVS signaling was a viral strategy that accelerated HIV-1 replication in
infected individuals.



nature HIV-1 blocks the signaling adaptor MAVS to evade antiviral host
o defense after sensing of abortive HIV-1 RNA by the host helicase

immunology D3

 DCs do not mount protective immunity against HIV-1

* Normally after PRR recognition, type | IFNs are induced, which activate an antiviral program
of interferon-stimulated genes (ISGs) > ISGs counteract virus replication.

* Type | interferons also induce antiviral adaptive immunity via DC maturation and T helper
cell polarization

* HIV-1infects DCs, BUT neither DC activation nor type | interferon responses are induced
(low-level productive infection)

* Although viral RNA, DNA and proteins are recognized by various host proteins (DC-SIGN,
RIG-I, TLR8, SAMHD1, TREX1, DDX3, MAVS etc.), it remains unclear how HIV-1 avoids
immune surveillance in DCs.

* In this manuscript, one piece in the puzzle of inefficient DC activation and antiviral functions
upon HIV-1 infection was shed light on >
group identified RNA helicase DDX3 as sensor for abortive HIV-1 RNA in DCs, which
induced IFN I and DC maturation via signaling adaptor protein MAVS.

BUT: simultaneous recognition of HIV-1 by DC-SIGN suppressed these responses via Raf-1-
mediated activation of host factor PLK1, which impeded signaling downstream of MAVS.



nature HIV-1 blocks the signaling adaptor MAVS to evade antiviral host
o defense after sensing of abortive HIV-1 RNA by the host helicase
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HIV-1 blocks the signaling adaptor MAVS to evade antiviral host
defense after sensing of abortive HIV-1 RNA by the host helicase

Fig. 1 Raf-1 inactivation triggers type | IFN responses in DCs (real-time RT-PCR of type | IFN and
ISG responses)
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nature HIV-1 blocks the signaling adaptor MAVS to evade antiviral host
o defense after sensing of abortive HIV-1 RNA by the host helicase

immunology D3

DC-

Fig. 2 Efficient type | IFN responses are mediated via DDX3 and MAVS (real-time RT-PCR
using siRNAs, confocal co-localization).
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Fig. 3 DDX3 bound to capped abortive HIV-1 RNA products
induces type | interferon responses via MAVS

* See, whether DDX3 associates with MAVS within
translation initiation complexes (TIC) at ribosomes > IB of
TIC after pulldown, RT-PCR of abortive and tat-rev mRNA
after IP)



nature HIV-1 blocks the signaling adaptor MAVS to evade antiviral host
o defense after sensing of abortive HIV-1 RNA by the host helicase
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HIV-1 blocks the signaling adaptor MAVS to evade antiviral host
defense after sensing of abortive HIV-1 RNA by the host helicase
DDX3

Fig. 5 HIV-1 attachment via DC-SIGN activates the Raf-1 signalosome (MST1, adapter
CNK1) and PLK1. PLK1 activation in turn blocks TRAF3 recruitment to the DDX3-MAVS
complex and thus also IFN | responses.
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Association of PLK1 with MAVS in HIV-1-infected cells prevents downstream DDX3-MAVS signaling.



nature HIV-1 blocks the signaling adaptor MAVS to evade antiviral host
defense after sensing of abortive HIV-1 RNA by the host helicase

immunology D3

Hm Fig. 6/7 Type | IFN responses suppress HIV-1 replication.
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nature HIV-1 blocks the signaling adaptor MAVS to evade antiviral host
o defense after sensing of abortive HIV-1 RNA by the host helicase

immunology D3

Fig. 8 DC activation in major and minor genotypes and upon siRNA silencing of DDX3, MAVS or PLK1.
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nature HIV-1 blocks the signaling adaptor MAVS to evade antiviral host
° defense after sensing of abortive HIV-1 RNA by the host helicase

immunology D3

Highlights

Teunis Geijtenbeek and his group nicely showed that early antiviral responses during infection
are beneficial in host control of viral replication also during the latency state (illustrated with
untreated patients with HIV-1 who express MAVS (Q198K, S409F).

Observation that inhibition of the DDX3-MAVS blockade in primary human vaginal DCs after HIV-
1 infection restored type | IFN responses > suggest that topical therapeutic targeting could be
beneficial during sexual transmission of HIV-1.

Type | IFN responses are important in acute retroviral exposure, during which time DCs are a
prominent target for HIV-1.

Boost of endogenous antiviral immunity in acute exposure or even as prophylactic measure
suggested.



BUT: in vivo HIV-1 is opsonized with either complement or specific Abs
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BUT: in vivo HIV-1 is opsonized with either complement or specific Abs

Acute phase of infection
IA of DCs with HIV-C or HIV

Posch et al., AIDS Res Hum Retroviruses, 2014



Based on previous findings that

DCs > innate sensors to specifically inhibit HIV-1 replication (e.g. Manel et al., 2010;
Lahouassa et al., 2010; White et al., 2013; Rasaiyaah et al., 2013)

= DCs >only low-level productive infection with HIV-1 (Yan and Liebermann, 2011)
= DCs =non-permissive >viral evasion (Manel and Littman, 2011)

= Type | IFNs are not induced by non-opsonized virus (Gringhuis et al, 2017)

HIV
(non-opsonized)

HIV-C
(complement-opsonized)

< Covalently bound C3 fragments

CRs
(CR3, CR4)

<+—HIV-gG

(Ab-opsonized)



DC FUNCTIONALITY AFTER HIV-C EXPOSURE:: ENHANCING DC MATURATION > COMPARE FIGURE 8 GRINGHUIS

ET AL, 2017
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DC FUNCTIONALITY AFTER HIV-C EXPOSURE :: INCREASING TYPE | IFN RESPONSES > COMPARE FIGURE 8
GRINGHUIS ET AL, 2017
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NM_145699 apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3A (APOBEC3A)
NM_002416 chemokine (C-X-C motif) ligand 9 (CXCL9)

NM_001565 chemokine (C-X-C motif) ligand 10 (CXCL10)

NM_005409 chemokine (C-X-C motif) ligand 11 (CXCL11)

NM_016323 hect domain and RLD 5 (HERC5)

NM_006820 interferon-induced protein 44-like (IF144L)

NM_001548 interferon-induced protein with tetratricopeptide repeats 1 (IFIT1)

NM_001549 interferon-induced protein with tetratricopeptide repeats 3 (IFIT3)

NM_172174 interleukin 15 (IL15)

NM_005101 1SG15 ubiquitin-like modifier (ISG15)

| NM_002201 interferon stimulated exonuclease gene 20kDa (ISG20)

NM_002462 myxovirus (influenza virus) resistance 1, interferon-inducible protein p78 (mouse) (MX1)
NM_003733 2 -5 -oligoadenylate synthetase-like (OASL)

NM_080657 radical S-adenosyl methionine domain containing 2 (RSAD2)

NM_017414 ubiquitin specific peptidase 18 (USP18)
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DC FUNCTIONALITY AFTER HIV-C EXPOSURE:: EXERTING A HIGHER SPECIFIC TC STIMULATION

HIV-SPECIFIC CD8* T CELLS HIV-SPECIFIC CD4* T CELLS

2 n)
< T
o 25000 ns G 60000+
- I I — —T—
@ A
8 20000 - T () 180004
(] —_
% <0.0001 % 15000
o 15000 g
0 @
N = 100004
I 100004 T
u:o %
d T H0004
% 5000 - u
: - 2
o
= 0 2 0
? | | E— |
Z Q
L S S N & L R
& 2 ¢

Posch et al., PLoS Pathogens, 2015



DOWN MODULATION OF SIGNALING PATHWAYS ASSOCIATED WITH MAVS INHIBITION IN HIV-C-DCs
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Theo Geijtenbeek,
Nature Immunology 2017

HIV-C down-modulates PLK1 and Raf phosphorylation compared to
iDCs, LPS-DCs or HIV-DCs

Posch et al., submitted



HIV-C INDUCES MAVS AGGREGATION IN DCs anp sussequenTLy Atso IRF-3 AND NFkB ACTIVATION
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GETTING THE RIGHT MOMENT: TARGETING COMPLEMENT FOR NOVEL HIV-1 VACCINATION STRATEGIES

HIV-C

HIV or HIV-Ig
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Complement opsonization together with DCs plays a central role in virus control
especially during acute phase of infection



