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INNATE IMMUNITY:
ALWAYS AT THE READY

» when microbes break the surface borders (skin, mucosa, etc.) - innate immune responses are

immediately activated

m E Innate immune system

Innate immune functions

H

(CDa*, CD8*)

Adaptive immune system

humoral innate immune responses are spontaneously

activated (complement, cytokines, defensins)

co-ordinated and immediate recruitment of innate
immune cells (macrophages, neutrophils, NK cells, NKT
cells, dendritic cells) to the sites of infection and

induction of defense mechanisms against the invader

cells interact via pattern recognition receptors (PRRs)

with microbes or their products and internalize these




INNATE IMMUNITY:

INFECTION ROUTES AND APPEARANCE OF IMMUNE ELEMENTS
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INNATE IMMUNITY:
HUMORAL COMPONENTS
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INNATE IMMUNITY:
CELLS, E.G.

Makrophagen Neutrophile Granulozyten Dendritische Zellen

Dr. Volker Brinkmann,
Max-Planck Institut fur Infektionsbiologie




THE COMPLEMENT SYSTEM
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Complement system

> Immediately activated upon entry of pathogen

!

Complement fragments coat the pathogen surface (Opsonisation)

Destruction of the pathogen Labelling of the pathogen




part of the that helps or the ability of and cells to
clear from an organism

comprised of more than proteins and , mostly synthesized by the
liver > of the globulin fraction of blood serum, act as

circulate as and when stimulated proteases cleave specific proteins, which initiates
an of further cleavages > results in massive amplification of the response and
activation of the cell-killing membrane attack complex ( )

3 biochemical ways of complement activation: Classical pathway, Lectin pathway, Alternative pathway



http://en.wikipedia.org/wiki/Immune_system
http://en.wiktionary.org/wiki/complement#Verb
http://en.wikipedia.org/wiki/Antibody
http://en.wikipedia.org/wiki/Phagocytic
http://en.wikipedia.org/wiki/Pathogens

Classical Pathway

The Classical Pathway is activated by the Fe
portion of an immunoglobulin in an antigen-

Alternative Pathway

The Alternative Pathway does not depend on
an antigen-antibody reaction in order to

antibody complex. It can also be activated by
enzymes (e.g. trypsin and plasmin) and a variety of
substances which include endotoxins, cell
membranes and viruses.

become active. Biological activators of this

pathway include bacterial endotoxins, yeast

cell walls, aggregated immunoglobulins and
snake venom.
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MAC
The Membrane Attack Complex
(MAC) or Terminal Complement
Complex (TCC) is inserted into the

lipid bilayer, leading to movement of
ions and water across the membrane
and ultimately to cell lysis.
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Intact E.coli E.coli killed by action
of complement

Schreiber et al, J.Exp.Med.149, 870
Scanning electron micrographs before and after
killing by complement.




EBV was incubated in buffer (A), Antibodies (B) Complement and
antibodies (C)

Nemerow and Cooper, 1981, J. Immunol. 127;273
EM negative staining; final magnification 1:125,000
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DENDRITIC CELLS AND OTHER INNATE IMMUNE CELLS EXPRESS PRRg
RECOGNIZING PATHOGENS

» PRRs: encoded in genome, not subject to rearrangement or variation

» PRRs: molecular sensors of infection on critical immune cells, i.e. DCs and macrophages

» but also other cells, i.e. epithelial cells, coming in contact with pathogens express subsets of PRRs

How can PRRs recognize pathogens from diverse families with different biology and
patterns of infection in the absence of functional re-arrangement?




PRR,

How can PRRs recognize pathogens from diverse families with diverse biology and patterns
of infection in the absence of functional re-arrangement?
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PRR,

How can PRRs recognize pathogens from diverse families with diverse biology and patterns
of infection in the absence of functional re-arrangement?
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PRR,

> Innate IR mediated via humoral components or PRRs: designed to induce inflammation at the site of
infection, recruit inflammatory cells and mediators and begin to potentiate the adaptive immune system.

Stimulatory Pathogen o ) : Transcriptional or
Arssociatecliy Molecuglar Pa;t:z: I:ecogmtlon Hipua o : Cellulaerathway
Pattern (PAMP) I Adapter Frotein Activated
Toll-like receptors (TLRs)
Bacterial cell wall TLR2 :
components homo /heterodimers i s NExB / AP

LPS i e MyDS8 NFxB / AP1

membrane) :

LPS TLR4 (endosome) TRIF IRF3 / NFxB / AP1
Flagellin TLR5 MyD88 NFkB / AP1
dsRNA TLR3 TRIF IRF3 / NFxB / AP1
ssRNA TLR7 MyD88 IRF7 / NFxB

Nod-like receptors (NLRs)
iE-DAP NOD1 RIP2 NFxB
MDP NOD2 RIP2/CARD9 NFxB / AP1
& Pore—t01tmm.g NLRP3 ASC Caspase-1 activation
toxins, nucleic acid
Retinoic acid-inducible gene I-like receptors (RLRs)
dsRNA | RIG-I | MAVS | IRF3/ APl / NFxB
C-type lectin receptors (CLRs)
B-glucans | Dectin-1 | Syk | NFxB




PRR; > OVERVIEW OF INNATE SIGNALING AND
COMPONENTS

* Lipoproteins, ssSRNA, dsRNA, CpG DNA, bacterial flagellin

* Members of TLR, NLR, RLR and CLR families
Pattern

recognition J

* MyD88, TRIF, RIP2, CARDS9, IPS1

PO * NFkB, IRFs, AP1

inflammatory
transcription
factors

* Cyto- and Chemokines, TNF, IL-1, IL-6, type | IFN > classic signs of
infection: redness, heat, swelling, pain




PRR FAMILIES
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http://www.nature.com/ni/journal/v13/n6/fig_tab/ni.2284 F1.html

class of proteins that play a key role in the innate
immune system

single, membrane-spanning receptors usually
expressed in sentinel cells

recognize structurally conserved molecules
derived from microbes

breach of physical barriers by microbes (e.g.
skin or intestinal tract mucosa) > recognition
by TLRs

TLRs recognize  structurally conserved

molecules derived from microbes




TR

« name from their similarity to the protein coded by the toll gene identified in Drosophila
> researchers were so surprised that they spontaneously shouted out in German
"Das ist ja toll!"

« TLR1, TLR2, , TLR4, TLRS5, TLR6, TLR7, TLRS, , TLR10, TLR11, TLR12, and TLR13

Recognition of different antigens by TLRs:

TLR-1:- Bacterial lipoprotein and peptidoglycans TLR-6:- Bacterial lipoprotein
TLR-2:- Bacterial peptidoglycans TLR-7:- Single stranded RNA

:- Double stranded RNA TLR-8:- Single stranded RNA
TLR-4:- Lipopolysaccharides - CpG DNA

TLR-5:- Bacterial flagella TLR-10:- Unknown




TLRs - Recognition
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Recognition of different antigens by TLRs:

TLR-1:- Bacterial lipoprotein and peptidoglycans

TLR-2:- Bacterial peptidoglycans

= Double stranded RNA

TLR-4:- Lipopolysaccharides

TLR-5:- Bacterial flagella

TLR-6:- Bacterial lipoprotein

TLR-7:- Single stranded RNA

TLR-8:- Single stranded RNA

:- CpG DNA

TLR-10:- Unknown




"TLR - Signaling
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nucleotide-binding oligomerization domain
receptors or NOD-like receptors
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recognize intracellular PAMPs
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3 domains:
NBD (nucleotide binding domain), LRR (leucine-rich repeat), variable N-terminal interaction domain

ATP-dependent oligomerization Sensing presence of ligand Responsible for homotypic protein-
- | Microbi protein interaction
Microorganisms NLR proteins components Can ConSISt Of:
3 . .
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is thought to be mediated by NLRP1 in
response to anthrax lethal toxin

Nature Reviews | Immunology
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RLRs - retinoic acid-inducible gene I-like receptors_

» small family of PRRs >

of viral replication through direct interaction with B
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CLRs — C-type lectin receptors

CLR Types » comprise large family of PRRs

— BEC:I03 W%’- > bind to carbohydrates in a calcium-dependent manner
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» based on molecular structures > 3 types of CLRs: Type |
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Dectin-2 s (T ( MB L)

Type |l Mincle e
DCSIGN Gl » involved in fungal recognition and modulation of the innate

immune response

- DNGR-I ITAM -aaq:

Soluble|: MBL » expressed by most cell types including macrophages and
% dendritic cells (DCs) > internalize glycoproteins and microbes

to clear and present Ag to T lymphocytes
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Intracellular Complement Activation Sustains T Cell Homeostasis and Mediates
Effector Differentiation

M. Kathryn Liszewski, Martin Kolev, Gaelle Le Friec, Marilyn Leung, Paula G. Bertram, Antonella F. Fara, Marta Subias, Matthew C.
Pickering, Christian Drouet, Seppo Meri, T. Petteri Arstila, Pirkka T. Pekkarinen, Margaret Ma, Andrew Cope, Thomas Reinheckel,
Santiago Rodriguez de Cordoba, Behdad Afzali, John P. Atkinson, Claudia Kemper

Immunity

Volume 39, Issue 6, Pages 1143-1157 (December 2013)
DOI: 10.1016/j.immuni.2013.10.018




CELLULAR COMPLEMENT

« Complement system is more than ‘just’ system of serum proteins for host
defence

« expressed by almost all immune cells (incl. B and T cells)
« directs both innate and adaptive immune responses
« it's more than a pro-inflammatory effector system

« mediates crosstalk between other cell effector systems (e.g.: growth factor
receptors, metabolic sensors and the Notch system)




SYSTEMIC VS. CELLULAR COMPLEMENT

a Systemic complement activation
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Fig. 1: Resting Human CD4* T Cells Contain Stores of C3 and C3-Activating Cathepsin L

» explore potential C3 convertase-independent mechanisms > performed gene expression studies and focussed on endogenous
proteases > revealed large amounts of endosomal and lysosomal proteases are regulated upon T cell activation > cathepsin B, G and L.

* they investigated if these cathepsins can cleave C3 in C3a and C3b in vitro > Fig 1A and B > CTSG and B degraded C3 only cathepsin L
was able to cleave C3.

» controls for various fragments of C3 > cleavage after 5 and 60 minutes is shown and additionally no cleavage when using a cathepsin
inhibitor or blocking antibody > Ab2 represents an additional control and does not block cathepsin L therefore > cleavage of C3.

» Fig 1B: generation of C3a is displayed > controls including C3a > cleavage of C3 to C3a is seen when using various concentrations of

cathepsin L (50, 100, and 200 ng)
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Fig. 1: Resting Human CD4* T Cells Contain Stores of C3 and C3-Activating Cathepsin L
*  PCR (Fig 1C) and flow cytometry (Fig 1D) performed to assess the expression of C3, cathepsin L and C3aR in CD4 T cells

+ they found that in resting CD4 T cells C3 and CTSL are already expressed intracellular (red) but not extracellular (green)




Fig. 1: Resting Human CD4* T Cells Contain Stores of C3 and C3-Activating Cathepsin L

confocal microscopy to localize the C3 and Cathepsin L expression in T cells
Cathepsin L was found in the ER (CInx, calnexin), the lysosomes (Lamp1l) and late-ER-derived secretory vesicles (Rab5)

C3 also localized with to the ER (CInx, calnexin) as well as in early and late ER-derived secretory vesicles EEA1 and Rab5)
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* investigated the extracellular and intracellular presence of C3a in resting and in activated CD4 T cells > further investigate Cathepsin L-
mediated processing of C3 occurs in human CD4 T cells

» For activation of the T cells > anti-CD3 and anti-CD3 and anti-CD46 antibodies for 1 hr > used antibody that specifically recognizes cleaved
C3a but not C3a within the alpha chain

* onresting CD4 T cells > no C3a was detectable > but when activated with anti-CD3 (left, red line) or the combination of anti-CD3 and anti-
CD46 (left, red line) > C3a appeared on the exterior of the cell

» this was significantly decreased when Cathepsin L inhibitor (left, black line) or blocking antibody (left, blue line) was added

+ Cathepsin L, C3 and C3aR were also detected at the surface of the cells and inside the cells

Ce“ * C3 and Cathepsin L were upregulated extracellular upon stimulation (right red and blue lines)
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Fig. 2: CTSL Generates Intracellular and Extracellular C3a

confocal microscopic analyses with non-activated and activated T cells > stained for C3b & Cathepsin L, C3b & CD46 as well as
C3a & C3aR

by microscopy and using the Pearson’s Correlation coefficient > show increase of colocalization of C3a & C3aR and C3 &
Cathepsin L > when T cells were activated with anti-CD3 and ant-CD46 antibodies

they concluded that Cathepsin L generates active C3a from existing C3 pools in resting CD4 T cells and also on the surface
when cells are activated
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during experiments using the Cathepsin L inhibitor and blockers > they noticed that cells entered an apoptotic state within 8-12 hrs > which
can be seen in Fig 3A > increasing amounts of inhibitor > cell viability goes down with or without addition of C3a

Since activation via T cell receptors is connected with mTor activation > required for T cell survival and induction of T cell responses >
investigated phosphorylation of mTor

they found > in line with the viability assays > Cathepsin L inhibitors decreased phosphorylation of mTor (Fig.3B upper panel, left) and
addition of C3a (Fig.3B upper panel, right) could not rescue the cells

they incubated the T cells with various concentrations of C3aR siRNAs > also found phosphorylation of mTor was reduced and also no
rescue effect with addition of C3a. (Fig 3C and 3B lower panel)
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+ same results > viability and phosphorylation of mTor were detected > using the inhibitor for G protein—coupled receptors > pertussis toxin
» supplementary figures show > this inhibitor is not toxic but demonstrates specific effectin CD4 T cells

Fig.3E shows that C3aR expression is also detected in lysosomes of resting T cells, but resting cells do not express C3aR on the surface
* in C3 deficient patient > cannot produce IFNg > T cells still survive and proliferate normally > Why?

* C3not produced in the liver > but cells of patients produce C3 > PBMCs isolated from 3 patients > able to produce C3 in comparable amount
as healthy > shown by PCR

+ panel below (I) shows PCR result from PBMC and CD4 cells from patient 1

+ C3a expression of patients and healthy donor is shown > equal protein expression of C3a by FACS analyses and confocal microscopy >
indicates cellular and not systemic generation of C3a.
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+ Cells were activated > treated with low level Cathepsin L inhibitor > no killing of cells > therefore no affect on cell viability or
mTor activation
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» already at this low level of inhibition > IFNg secretion was reduced by 50% > could be restored when C3a was added

» restoring only worked > cells were activation or stimulated with both anti-CD3 and anti-CD46 antibody but not with anti-CD3 only
> anti-CD46 mimics C3b generation and binding

» Same results were found > using the Cathepsin L blocking antibody > no effect using unspecific antibody
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* investigation of cytokine secretion by cytometric bead arrays > Th1l and Th17 related cytokines were only induced when both
signals — CD3 and CD46 — were present > Th2 related cytokines were barely affected

» Addition of Cathepsin L inhibitor > decreased cytokine secretion and could be restored upon C3a administration

* mouse experiments could not verify results > leading to the conclusion that cleavage of C3 works in an Cathepsin L independent
manner
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« samples from juvenile idiopathic arthritis patients were investigated > 51 IL-10
have a protein kinase B hyperactivation > makes cells resistant to 44
suppression by Treg cells > cause enhanced IFNg production A
* C3aR induces protein B kinase > necessary for mTor activation > good
model to investigate this mechanism 2
+ cells from synovial fluid or PBMCs from blood of juvinile idiopathic 11
arthritis > higher C3a levels > mTor activation than healthy individuals 5 e w1 d_| '
(left) , , _ , NA 0-CD3 «-CD3+ a-CD3+
+ cytokine expression was always higher when using patient samples > a-CD28 o-CD46

than samples from healthy donors (right)
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Fig. 5: Enhanced Cytokine Production by T Cells in the Synovial Fluid from a Patient with Juvenile Arthritis Is Normalized
by CTSL Inhibition

» further investigated patient samples > added Cathepsin L inhibitor to the experimental setup > found that C3a expression and
mTor (left) activation as well as IFNg and TNF induction (right) could be normalized in a dose-dependant manner > using the

Ce“ inhibitor
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Nonlymphoid Cell Populations

» showed that intracellular C3 activation is not a T cell specific phenomenon > a general mechanisam

Ce“ + anewly discovered intracellular pathway that regulates cell activation, immune regulation, maintenance and homeostasis.
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Conclusions

cellular C3 cleavage is C3 convertase independant > T-cell expressed Cathepsin L cleaves C3

resting T cells contain an intracellular pool of Catheps > fast cleavage of C3 upon stimulation

C3a engages with C3aR > C3aR is expressed on lysosomes > on the surface when T cells are activated
this systems activates mTor > better cell survival

translocation of C3aR to the surface in effector cells > activation of Thl cell-mediated responses

Treg cells lack CD46-CYP-1 upregulation > no IFNg Resting T cel Activated effector T cell
differences between mice and men > not Cathepsin dependant
data obtained represents a shift in our thinking of complement —
not only as a part of the innate immune systems that opsonizes

and lyses pathogens as well as induction of pro-inflammatory
cytokines

but also a intracellular regulator of cell activation, survival and
other cell effector systems.
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