

Genetic Epidemiology at the intersection between function and disease

Florian Kronenberg Institute of Genetic Epidemiology, Medical University of Innsbruck

Gain in detected genes by GWAS

Examples for metabolic traits		
Disease	before 2007	2007 onward
Type 2 DM	3	50
Body mass index	1	30
Glucose or insulin	1	15
Fat distribution	0	20
Lipids	16	95
Total	21	202

7 examples of autoimmune diseases		
Disease	before 2007	2007 onward
Ankylosis spondylitis	1	13
Rheumatoid arthritis	3	30
Systemic lupus eryth.	3	31
Type 1 DM	4	40
Multiple sclerosis	1	51
Crohn's disease	4	67
Ulcerative colitis	3	44
Total	19	277

Since 2012 the number of known genes has further increased by 5- to 10-fold

Visscher et al.: Am.J.Hum.Genet. 90:7-24, 2012 (updated)

<section-header><section-header><section-header><image><image><section-header>

Where is the reward?

Can a single gene explaining less than 1% of the traits' variance still be useful for anything?

Conclusions on GWAS

- An hypothesis-free approach
- Never before such a gain in gene-phenotypic information
- New genes for CAD, diabetes, cancer, kidney function...
- Odds ratios between 1.02 and 1.40
- To have the equipment is only the smallest step
- Very large studies of well phenotyped cohorts are necessary
- Works only within a very well constructed network between genetics, epidemiology, statistics, informatics, genomics
- Data sharing (a lot is already on the web)
- Non-coding SNPs and "gene deserts" can no longer be neglected
- A lot to learn about regulatory regions
- Functional characterization of "new" genes will need decades

