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Chromosome biorientation produces hundreds
of piconewtons at a metazoan kinetochore
Anna A. Ye1,2, Stuart Cane1,2 & Thomas J. Maresca1,2

High-fidelity transmission of the genome through cell division requires that all sister

kinetochores bind to dynamic microtubules (MTs) from opposite spindle poles. The

application of opposing forces to this bioriented configuration produces tension that stabilizes

kinetochore–microtubule (kt–MT) attachments. Defining the magnitude of force that is

applied to kinetochores is central to understanding the mechano-molecular underpinnings

of chromosome segregation; however, existing kinetochore force measurements span orders

of magnitude. Here we measure kinetochore forces by engineering two calibrated force

sensors into the Drosophila kinetochore protein centromere protein (CENP)-C. Measurements

of both reporters indicate that they are, on average, under B1–2 piconewtons (pNs) of force

at metaphase. Based on estimates of the number of CENP-C molecules and MTs per Dro-

sophila kinetochore and envisioning kinetochore linkages arranged such that they distribute

forces across them, we propose that kinetochore fibres (k-fibres) exert hundreds of pNs of

poleward-directed force to bioriented kinetochores.
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T
he forces that act on the kinetochore (kt) and how they
are transduced depend on the nature of kt–microtubule
(MT) interactions and the identity and number of force

producers. Early in mitosis, kinetochores predominantly associate
with the sides of MTs. The forces produced by kinetochore-
associated motors laterally interacting with MTs are transmitted
into sliding chromosomes directionally within the spindle.
The major kinetochore-associated force producers at this stage
are the plus-end-directed centromere protein (CENP)-E and the
minus-end-directed dynein each of which are capable of
producing forces in the low pN range (B1–8 pNs)1–4. While
motor-mediated forces produced during lateral kt–MT
interactions facilitate proper chromosome congression5,6, they
are neither sufficient to satisfy the spindle assembly checkpoint
nor to support accurate chromosome segregation during mitosis7.
Rather, these outcomes require the formation of stable end-on kt–
MT attachments that are mediated by a conserved MT-binding
complex in the outer kinetochore called the KMN (KNL-1, Mis12
complex, Ndc80 complex) network8.

End-on attached kinetochores must be able to harness the forces
produced by MT dynamics to move chromosomes.
MT polymerization exerts forces (B3–4 pN) similar to those
produced by kinetochore motors9, while depolymerization of a
single MT has been estimated to produce forces up to 65 pN
(ref. 10), an order of magnitude higher than individual
motors. Poleward pulling forces applied to end-on attached
kinetochores contribute to prometaphase congression, metaphase
oscillations and anaphase A movements11–15. When biorientation
is established, opposing poleward forces produce tension across
sister kinetochores that stabilizes kt–MT attachments and
contributes to spindle assembly checkpoint satisfaction16–18.
There is a surprising lack of consensus about the magnitude of
force that is applied to the kinetochore despite the fact that it is one
of the most important force-transducing structures in the cell.

In principle, very low forces are sufficient to move
non-bioriented chromosomes if the only opposing force is the
viscous drag of the cytoplasm19. Indeed, analyses of anaphase
chromosome movements in insect meiotic and mitotic cells yielded
force estimates below 1 pN (refs 19,20). However, the forces
required for moving mono-oriented chromosomes poleward in
prometaphase amphibian cells were estimated to be considerably
higher and ranged between B10 and 75 pN (ref. 21). The

discrepancy is likely a result of polar ejection forces and steric
hindrance from astral MTs opposing prometaphase but not
anaphase chromosome movements. Prometaphase poleward
movements are mainly driven by lateral sliding along MTs by
kinetochore-associated dynein22, but differences in prometaphase
(10–75 pN) and anaphase (o1 pN) forces cannot simply be
attributed to dynein producing higher forces than is generated by
depolymerizing kt–MTs during anaphase. To the contrary, a
landmark study employing calibrated microneedles concluded
that anaphase k-fibres in insect spermatocytes produced up to
700 pN (50 pN per MT) of poleward directed force23. It is worth
noting that 50 pN per MT may be an overestimate since it was
based on the assumption that only microtubules spanning the
kinetochore and pole, estimated to be B15 out of B45 kt–MTs,
could effectively produce force. It has subsequently been shown
that kt–MTs do not need to be linked directly to the pole to exert
forces on the kinetochore24–26. Nonetheless, for simplicity and
consistency’s sake, the original suite of per MT force estimates27

will be referred to from here onward when discussing Nicklas’
spermatocyte studies.

While the 700 pN stall force was measured in anaphase, this
number may better reflect the magnitude of force applied to
metaphase kinetochores since the application of opposing force
with a microneedle more closely resembles the bioriented
configuration than the typical anaphase scenario. However,
measuring forces at bioriented kinetochores has presented a
significant challenge. Researchers recently estimated that the mean
pericentromeric tension at bioriented yeast kinetochores is 4–6 pN
per MT (and per kinetochore since the budding yeast kinetochore
binds one MT)28. This value fits reasonably well with in vitro
optical trapping studies using purified budding yeast kinetochore
proteins and isolated kinetochore particles that have reconstituted
associations with single MT plus ends over forces ranging
from B2 to 9 pN (reviewed in Yusko and Asbury29). Although
forces above 20 pN have been theoretically inferred30 and
directly measured for kinetochore proteins attached to beads
via extended linkers31. While a general consensus (within an
order of magnitude) may be emerging for the forces that are
applied to budding yeast kinetochores, experimental measurements
in metazoans have diverged markedly. In contrast to earlier
measurements of 700 pN per kinetochore (50 pN per MT)23, a
more recent optical trapping study in meiotic insect cells and
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Figure 1 | Construction of the CENP-C-based force sensors and the experimental design for force measurements. (a) Drosophila CENP-C organization

highlighting the N-terminal outer kinetochore (kt) binding domain (grey), the C-terminal DNA/centromere binding domain (polka dotted), and the placement

of the internal force sensor. (b) Disorder profile plot of Drosophila melanogaster (Dm) CENP-C using the DISOPRED3 disorder prediction method at the

PSIPRED Protein Sequence Analysis Workbench55 (http://bioinf.cs.ucl.ac.uk/psipred/). (c) Schematic of the Drosophila kinetochore and the experimental

design showing CENP-C-based force sensors placed internally (experimental, force applied) versus at the C terminus (control, no force applied).
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mitotic mammalian cells measured stall forces of end-on attached
kinetochores at B2–10 pN per kinetochore (below 1 pN per
MT)32. Thus, existing estimates of end-on-attached kinetochore
forces in animals span two orders of magnitude.

Drosophila S2 cells are an excellent model system to study
kinetochore forces as sister kinetochores are generally under
equal opposing forces because bioriented chromosomes do not
oscillate. Furthermore, most other well-studied kinetochores
possess multiple linkages between the DNA and the outer
kinetochore, but the Drosophila kinetochore appears to possess a
single linker molecule—CENP-C33. In this study we aimed
to address the substantial inconsistencies in kinetochore
force estimates by inserting Förster resonance energy transfer
(FRET)- and talin-vinculin-based force sensors into CENP-C
since it is ideally positioned as a force-transducing kinetochore
component in Drosophila. Live-cell measurements of the two
reporters yielded comparable estimates (B1–2 pN) of the average
amount of force applied per CENP-C reporter molecule at
metaphase. MT dynamics, but not dynein, contributed to force
production within the measurable range of the FRET-based
reporter at bioriented kinetochores. We conclude that metaphase
k-fibres exert hundreds of pNs and posit that depolymerizing
kt–MT plus-ends are the dominant poleward-directed force
producers at bioriented Drosophila kinetochores. The findings
have implications for understanding the fundamental interplay
between force and kinetochore structure, function and evolution.

Results
Measuring kinetochore forces with a FRET-based sensor.
CENP-C constitutively localizes to the centromere throughout
the cell cycle. It associates with centromeric DNA through its
C terminus34–36 and its N terminus binds directly to the outer
kinetochore37,38 while the rest of the protein, especially in
Drosophila, is predicted to be highly disordered (Fig. 1a,b). The
behaviour of force reporters inserted into the central unstructured
region of CENP-C were compared with negative controls in
which the sensors were placed at the C terminus so that they
would not be subjected to force (Fig. 1c). Stable cell lines
expressing each of the force reporters were used in all the
experiments and there were no evident dominant negative effects
to engineering CENP-C in the manners described.

The first CENP-C force reporter was built using a modified
version of a spider-silk-based FRET sensor called TSMod (tension
sensor module)39, comprised of the FRET pair mTurquoise2 and
mVenus flanking an elastic linker (Fig. 2a). The application of
force to TSMod leads to reduced FRET and, notably, the FRET
sensor has been calibrated and shown to report on forces in the
1–6 pN range. Insertion of the TSMod reporter into CENP-C did
not evidently disrupt its function as chromosome alignment
was indistinguishable between control cells and cells treated
with dsRNA targeting the 30-untranslated region (30-UTR) of
the CENP-C transcript to knockdown (with B50–60% efficiency)
the endogenous CENP-C (Fig. 2b). CENP-C-TSMod exhibited a

c d

a

N
or

m
al

iz
ed

 F
R

E
T

 r
at

io
 (

%
)

(F
R

E
T

/m
Tu

rq
uo

is
e2

)

60

80

100

120

140

160

C-TERM Internal

MetaphaseInterphase

***NS

Higher force = lower FRET

Elastic Linker (GPGGA)8

mTurquoise2 mVenus

Low force = higher FRET

1

CENP-C (N terminus)

1,411

CENP-C (C terminus)

598 599

CENP-C-TSMod Force Sensor
F F

120

0

20

40

60

80

100

Control
RNAi 

CENP-C
3’-UTR RNAi 

P
er

ce
nt

ag
e 

of
 c

el
l

Metaphase
Misaligned (>1)

Control
RNAi

CENP-C
3’-UTR RNAi

CENP-C-TSMod

CENP-C

Ndc80

250 kD

75 kD

100 kD

(60% knockdown)

b

In
te

rp
ha

se
(N

o/
lo

w
 fo

rc
e)

M
et

ap
ha

se
(h

ig
he

r 
fo

rc
e)

TagRFP-T mTurquoise2 mVenus

*

*

*

*

*

*

Figure 2 | Characterization of the CENP-C-TSMod reporter and FRET emission ratio measurements. (a) The TSMod sensor inserted into the middle of

TagRFP-T-CENP-C. (b) Quantification of chromosome alignment in control and endogenous CENP-C depleted, internal CENP-C-TSMod expressing cells

treated with MG132 (representative western blot—left panel). Mean values from two independent experiments; Control RNAi; n¼ 105 cells, CENP-C 30-UTR

RNAi; n¼ 104 cells. (c) Cellular localization of the internal CENP-C-TSMod. Dashed lines denote cell boundaries, a solid line outlines the nucleus, and

asterisks mark spindle poles. Comparable channels are displayed with identical contrast and brightness scaling. (d) FRET emission ratios of the internal and

C-terminal reporters normalized to the interphase condition (set to 100%) for each reporter. C-terminal data are from two independent experiments; n¼67

interphase cells, n¼60 metaphase cells. Internal data are from three independent experiments; n¼ 198 interphase cells, n¼ 124 metaphase cells. Scale bar is

10mm. Error bars are s.e.m. P values from Mann–Whitney Wilcoxon t-tests are reported: not significant (NS) P value40.05, ***P valueo0.0005.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13221 ARTICLE

NATURE COMMUNICATIONS | 7:13221 | DOI: 10.1038/ncomms13221 | www.nature.com/naturecommunications 3

http://www.nature.com/naturecommunications


normal localization pattern as it constitutively associated with
centromeres throughout the cell cycle when expressed in S2 cells
(Fig. 2c). Interphase cells, which do not have assembled
kinetochores, were used as the no/low force condition while
bioriented metaphase kinetochores were the higher force
condition. First, the FRET emission ratio (FRET signal/donor
(mTurquoise2) signal) of the reporter was measured.
A statistically significant 7% decrease (P valueo0.005) in
the FRET emission ratio was measured in metaphase compared
with interphase cells expressing the internal TSMod (Fig. 2d;
Supplementary Fig. 1a). The metaphase reduction in FRET was
not a result of cell cycle effects on the behaviour of the reporter
and was dependent on the internal positioning of the sensor as
there was not a statistically significant difference (P value40.05)
in the FRET emission ratio of the C-terminal TSMod in
interphase versus metaphase cells.

While the reduction in FRET emission ratio indicated that the
internally positioned TSMod was under greater tension in
metaphase than in interphase, it was not feasible to estimate
the magnitude of force applied to CENP-C from the change in
the emission ratio as the reporter was originally calibrated based
on changes in FRET efficiency. To overcome this limitation,
acceptor photobleaching was applied to measure the FRET
efficiency of the CENP-C TSMod reporters (Fig. 3a). In this
approach, the FRET efficiency is measured by quantifying
the extent to which the fluorescence intensity of the
donor (mTurquoise2) increases following photobleaching of the
acceptor (mVenus). In general agreement with the FRET
emission ratio measurements, a statistically significant B12.5%
decrease (P valueo0.005) in the FRET efficiency of the internal
TSMod reporter was measured in metaphase (20.7±0.5% (s.e.m.)
FRET efficiency) compared with interphase (23.6±0.6% FRET
efficiency) while there was not a statistically significant
(P value40.05) change in the FRET efficiency of the C-terminal
reporter (Fig. 3b; Supplementary Fig. 1b). Chromosome
biorientation was required to generate tension as the FRET
efficiency of the internal TSMod at kinetochores associated
with monopolar spindles following depletion of kinesin-5 was
indistinguishable from interphase measurements (Fig. 3b).
Importantly, there was negligible (o0.5%) or no detectable
bleed-through from the TagRFP signal into any of the
relevant channels used in the FRET-based imaging approaches
(Supplementary Fig. 1c,d). The live-cell FRET efficiency
measurements compared remarkably well with the FRET
efficiency–force estimation of the TSMod developed from single
molecule calibrations39. Based on the published force estimation
curve, the CENP-C-TSMod data are consistent with each
CENP-C molecule experiencing forces below the limit of
detection in interphase and, on average, B1.2–1.4 pN at
bioriented kinetochores (Fig. 3c).

MT dynamics contributes to metaphase force generation.
The MT-stabilizing drug taxol was next used to assess the
contribution of MT dynamics to kinetochore forces. Addition of
greater than B20–50 nm taxol to Drosophila S2 cells results
in monopolar spindles, but bipolar spindles form more frequently
in the presence of higher concentrations of taxol following
depletion of the minus-end directed motor dynein40. Dynein
heavy chain (Dhc) RNAi treatment exhibited the expected
phenotype of a significant increase in metaphase cells. While
normal metaphase forces were measured at bioriented
kinetochores in DMSO-treated cells following Dhc RNAi,
addition of 500 nM taxol resulted in a statistically significant
(P valueo0.05) increase in the FRET efficiency of the internal
CENP-C-TSMod reporter at bioriented kinetochores in
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Dhc-depleted cells (Fig. 3d). Thus, MT dynamics, but not the
minus-end-directed motor protein dynein measurably contribute
to force production, within the range of detection of the internal
CENP-C-TSMod reporter, at bioriented kinetochores.

Measuring kinetochore forces with focal adhesion components.
To corroborate the FRET-based measurements, a second
CENP-C force reporter was designed based on the focal adhesion
protein talin and its binding partner vinculin. Single molecule
experiments with the talin rod (TR) domain demonstrated that
the application of force to the molecule increased the number of
associated vinculin head (VH) molecules purportedly by exposing
vinculin binding sites in the TR domain (Fig. 4a)41. As with
the TSMod reporter, the TR domain was inserted into either
the middle of TagRFP-T-CENP-C to measure force or at the
C terminus to serve as a negative control (Fig. 1c). Cell lines were
built that expressed both VH-EGFP and the CENP-C-TR force
sensors based on the hypothesis that the application of force to
the TR domain in CENP-C should increase the number of bound
VH molecules (Fig. 4b). As observed for the TSMod force sensor,
insertion of the TR reporter into the middle of CENP-C did not
disrupt its function as chromosome alignment was normal in
CENP-C-TR-expressing cells depleted of endogenous CENP-C

(Fig. 4c). Importantly, VH-EGFP localized to kinetochores in a
CENP-C-TR-dependent manner (Fig. 4d).

To quantify the number of VH molecules associated per TR
domain, a fluorescence correction ratio was determined before
imaging the experimental conditions by imaging a reference
CENP-C protein with an equal number of EGFP and TagRFP-T
fluorophores (Supplementary Fig. 2). The correction ratio
was then applied to the measured fluorescence intensities of
VH-EGFP and Tag-RFP-T-tagged CENP-C-TR, which were
imaged using the identical imaging parameters as the reference
conditions. Since the assay involved a two-component system
and the VH-EGFP was distributed through the cytoplasm,
nucleoplasm and centromeres during interphase, the low/no
force condition was created by generating unattached kineto-
chores through treatment with the MT-depolymerizing agent
colchicine. The internal TR-reporter-associated with an average
of B0.9±0.02 VH-EGFP molecules in colchicine-treated cells.
There was not a significant difference (P value40.05) between
VH molecules bound per TR in colchicine-treated and metaphase
cells expressing the C-terminal reporter although the
mean number of VH molecules per TR was lower
(B0.75±0.03) for the C-terminal reporter. In metaphase cells
expressing the internal TR, the VH-EGFP signal at bioriented
kinetochores was brighter than at unattached kinetochores with
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an average of B1.3±0.05 VH molecules per CENP-C-TR
(Fig. 4e; Supplementary Fig. 3a). Fluorescence measurements
were not impacted by the fact that TagRFP-T and EGFP is a
FRET pair as FRET was not detectable in either metaphase or
colchicine-treated cells (Supplementary Fig. 3b–d).

In prior work, the number of VH molecules per TR domain
was counted in the absence of force and after applying 2 or 12 pN
to single TR molecules with a magnetic trap41. While these
measurements were done in vitro rather than in living cells,
we feel that the approach employed here is bolstered by the
fact that a comparable number of VHs per TR was measured
in vitro in the absence of applied force and in colchicine-treated
cells expressing the internal TR reporter (Fig. 4f). The
measurement of B1.3 VH molecule bound per internal TR
domain in living cells is slightly below the average number of
VH molecules bound to a TR domain under 2 pN of force applied
in vitro (Fig. 4f).

Discussion
The TSMod- and TR-based reporters indicated that each
CENP-C molecule experiences, on average, B1–2 pN of force
at bioriented kinetochores. It is important to recognize that both
the FRET efficiency measurements and VH counting numbers
come from ensembles of molecules some of which are likely in a
resting state and others that are in a tense state. Furthermore,
since all the measurements are done in the presence of
endogenous CENP-C it is possible that the load could be
shared unequally between the tagged and untagged CENP-C
molecules or distributed through a greater number of CENP-C
molecules than are typically present. Thus, the 1–2 pN per
CENP-C estimate by no means excludes that forces are
differentially distributed through individual CENP-C linkages,
and may even underestimate the magnitude of force that can be
applied to CENP-C. Nevertheless, the average estimate provides a
solid framework from which to parlay our experimental findings
into a reasonable proposal for a physiologically relevant range of
forces produced by individual kt–MTs and the k-fibre as a whole.

Our MT and k-fibre estimates are based upon a generally
accepted concept of the structural organization of the kinetochore
(reviewed in Rago and Cheeseman42), measurements of the
number of CENP-C molecules43–45 and kt–MTs46 per Drosophila
kinetochore, and the force per CENP-C molecule measured here
(Fig. 5). The upper and lower limits of the proposal are defined by
the range of force per CENP-C (1–2 pN) and previously reported
Drosophila CENP-C counting experiments43–45 based on a
fluorescent standard (12–31 per MT). In Drosophila, we posit
that the force produced by a single MT at mature bioriented
attachments is distributed between CENP-C molecules arranged
as a set of parallel springs that connect to the MT through the
Mis12 complex and the Ndc80 complex. It would therefore
hold that the force a single MT generates would be the number
of CENP-C molecules (12–31) multiplied by the force applied
to each CENP-C molecule (1–2 pN) meaning that, on average, a
kt–MT exerts B12–62 pN of poleward-directed force. The total
force applied to the kinetochore would equal the force per
MT multiplied by the number of MTs in the k-fibre. Since there
is an average of 11 microtubules bound to Drosophila S2 cell
kinetochores46, we propose that a typical bioriented kinetochore
in these metazoan cells experiences between B135 and 680 pN of
poleward-directed pulling forces. This magnitude of force differs
significantly from that measured in live-cell optical trapping
experiments32, but largely agrees with the classic cell-based
microneedle experiments in insect cells23,27 as well as with the
force estimate from a recent study combining experimentation
and computational theory in mammalian cells47.

We favor the interpretation that the depolymerizing kt–MT
plus-end is the dominant poleward-directed force producer at
bioriented Drosophila kinetochores for several reasons: (1) our
estimate of up to 62 pN per kt–MT nearly equals measurements of
the maximum amount of force depolymerizing MT plus-ends
generate in vitro10, (2) suppressing plus-end MT dynamics with
500 nM taxol reduces the amount of force at bioriented
kinetochores. Prior work concluded that 1mM taxol was
necessary to fully suppress MT dynamics in S2 cells40;
unfortunately, sufficient numbers of bioriented kinetochores
could not be measured in 1mM taxol. While the data indicate
that dynein is not a major force generator at metaphase
kinetochores, regulators aside from MTs may contribute since
500 nM taxol did not reduce the force to interphase levels. We
cannot exclude the possibility; however, that 500 nM taxol
dampens but does not fully suppress MT dynamics.
Interestingly, since kinetochore/centromere associated kinesin-13
family members are capable of depolymerizing taxol-stabilized MT
ends48, it would be worthwhile to further investigate the
contribution of these motors to force generation at bioriented
kinetochores. It is also noteworthy that just 10 nM taxol is
sufficient to reduce kt–MT flux by 490% in S2 cells49 and so our
data do not rule out k-fibre flux as a contributor to metaphase
force generation. Given that k-fibres flux and pull, and that
polymerizing and depolymerizing MTs are present within the
same kinetochore50,51, the relative contributions of kt–MT
polymerization versus plus (and perhaps minus)-end
depolymerization to kinetochore force transduction remains an
open and important question, which has recently been investigated
using FRET-based Ndc80 reporters in budding yeast52.

We hypothesize that kt–MT plus-end depolymerization sets
the maximum force applied to bioriented kinetochores and that

FMT = FCENP-C X  # CENP-C molecules per MT

Low

High

FCENP-C

1 pN

2 pN

# CENP-C
per MT FMT

12.3*

30.8**

12.3 pN

61.5 pN

# kt-MTs+

11

11

Max Fkt

677 pN

135 pN

Fkt= FMT X  # kinetochore-microtubules

CENCENP-C-C
Mis12Mis12

ComplexComplex
Ndc80Ndc80

ComplComplex

A simple Drosophila kinetochore model: Linkages arranged as a set of parallel springs

Figure 5 | An estimate of the magnitude of force applied to bioriented

kinetochores. The Drosophila kinetochore is envisioned as linkages between

the DNA and the kt–MT arranged as a set of parallel springs that distribute

forces produced by MT dynamics through them. In Drosophila, the known

path from the DNA to the MT is CENP-C, the Mis12 complex, and the

MT-associating Ndc80 complex. For simplicity, DmSpc105/KNL-1 has been

omitted. The TSMod- and TR-based force sensors reported that each

CENP-C molecule experiences, on average, B1–2 pN of force. If the poleward

force produced by a kt–MT is equally distributed across the CENP-C linkages

then, based on CENP-C counting experiments, each kt–MT could generate

between B12 and 62 pN. Since there are 11 MTs bound to S2 cell

kinetochores, if each kt–MT applies maximum poleward force then the total

force applied to the kinetochore would be as high as 135–677 pN. *Measured

by Schittenhelm et al.45 based on Cse4 standards from Joglekar et al.43

**Adjusted 2.5-fold based on recalibrated fluorescence measurements by

Lawrimore et al.44 þMeasured in Drosophila S2 cells by Maiato et al.46
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this limit must be highly conserved since it is derived, at its most
fundamental level, from GTP hydrolysis11,53. Thus, kinetochores
likely emerged and evolved in the presence of an evolutionarily
fixed maximum force generator—the depolymerizing kt–MT. A
common evolutionary strategy to building a kinetochore appears
to have involved distributing k-fibre forces through a sufficient
number of linkages such that individual components are not
subjected to very high forces that would denature them or
damage the underlying DNA. Defining the physical properties of
force-transducing kinetochore components as well as how forces
are transmitted across them will provide fundamental mechanical
insights into kinetochore function, and cell division in general.

Why would cell division in metazoan cells benefit from having
k-fibres capable of applying hundreds of pNs to kinetochores
when much lower forces are sufficient to move chromosomes? It
is possible that the ability of k-fibres to produce high forces allows
for proper resolution of merotelic attachments in anaphase54 or
for segregating chromatids to plow through unexpected obstacles
that may arise. However, because the measurements here are in
close agreement with Nicklas’ estimates of the amount of force
(30 pN per MT) required to stabilize kt–MT attachments27, we
propose that the application of hundreds of pNs to kinetochores
is most critical before anaphase to stabilize the geometrical
configuration with the best segregation prospects—bioriented
attachments.

Methods
Drosophila S2 cell lines. All cell lines were cultured in Schneider’s
(Life Technologies) media supplemented with 10% heat-inactivated fetal bovine
serum and 0.5� antibiotic-antimycotic cocktail (Life Technologies), maintained at
25 �C. Transgenic cell lines were generated by transfecting DNA constructs using
the Effectene Transfection Reagent system (Qiagen), following manufacturer
protocol. Protein expression was confirmed by fluorescence microscopy. Cells were
split in the presence of Blasticidin S HCl (Fisher) and/or Hygromycin (Sigma) to
select for expressing cells.

DNA constructs. The pMT-TagRFP-T-CENP-C construct was generated in mul-
tiple steps: (1) CENP-C was amplified from the cDNA, with 50 SpeI and 30 SacII sites
and inserted into pMT-V5 B vector; (2) endogenous CENP-C promoter was
amplified from genomic DNA with 50 XbaI site and 30 KpnI site and inserted into the
above plasmid purified from dam-/dcm- Escherichia coli; (3) TagRFP-T was
amplified with 50KpnI and 30SpeI sites, and inserted between the promoter and
CENP-C. Then, CENP-Cprom-TagRFP-T-CENP-C was amplified from the above
construct with flanking XbaI sites and inserted into pMT-V5 B vector purified from
dam-/dcm- E. coli to generate pMT-CENP-Cprom-TagRFP-T-CENP-C. To generate
the tension sensor module (TSMod) construct, mTurquoise2 and mVenus were first
inserted into pMT-V5 B vector between KpnI and SpeI sites, and NotI and SacII
sites, respectively to build pMT-mTurquoise2-mVenus. The spider silk DNA
sequence with flanking homology regions to mTurquoise2/SpeI site (50 end) and
NotI/mVenus (30 end) was synthesized (Life Technologies) and inserted between
mTurquoise2 and mVenus in the pMT-mTurquoise2-mVenus plasmid by Gibson
assembly. To generate the CENP-C-TSMod construct, the TSMod was amplified
from the above construct with primers upstream of mTurquoise2 and downstream
of mVenus with flanking ClaI sites, and inserted into pMT-CENP-Cprom-TagRFP-
T-CENP-C purified from dam-/dcm- E. coli. To generate the control construct with
the tension sensor in the C terminus of CENP-C, a ClaI site was engineered into a
pMT-CENP-Cprom-TagRFP-T-CENP-C (no stop codon) construct by inserting
annealed complementary oligos encoding a ClaI site flanked by XbaI sites down-
stream of CENP-C at the XbaI site and the TSMod was then inserted into this newly
engineered ClaI site as the internal ClaI site in CENP-C was methylated.

The CENP-C-TR construct was generated by amplifying talin rod domain
(aa 482–889) from chicken gizzard cDNA (Zyagen) with flanking ClaI sites, and
inserted into the pMT-CenpCprom-TagRFP-T-CENP-C construct described
above. To generate the control construct, in which talin rod was at the 30 end of
CENP-C, the rod domain was amplified with flanking XbaI sites and inserted
downstream of CENP-C.

To generate the VH-GFP construct, the vinculin head domain (aa 1–258) was
PCR amplified from a vinculin-mVenus construct [a gift from Martin Schwartz
(Addgene plasmid # 27300)] with 50 KpnI and 30 XbaI sites and inserted into the
pMT-V5 B vector with the EGFP sequence between the XbaI and SacII sites. The
CENP-C promoter was then inserted upstream of the vinculin gene with flanking
KpnI sites to drive expression.

Double-stranded RNA production. DNA templates for Dhc64C (CG7507),
KLP61F (CG9191), and CENP-C 30-UTR (CG31258) were produced to contain
B500 bp of complementary sequence flanked by T7 promoter sequence. Double-
stranded RNAs (dsRNAs) were synthesized overnight at 37 �C from the DNA tem-
plates using the T7 RiboMax Express Large Scale RNA Production System (Promega)
following manufacturer protocol. For RNAi, media was aspired off semi-adhered cells
at 25% confluence, replaced with 1 ml of serum-free Schneider’s medium containing
20mg of dsRNA, and after 1 h, 1 ml of fresh Schneider’s plus FBS was added to the
wells and incubated for 2 (Dhc, Klp61F) or 4 (CENP-C) days at 25 �C.

Western blot. A total of 20mg of protein was loaded onto a 10% SDS–PAGE gel,
run out, and transferred to a nitrocellulose membrane on the Trans-Blot Turbo
transfer system (Bio-Rad Laboratories) for 15 min. All antibodies were diluted in
TBS with 0.1% Tween and 5% milk. The membrane was first incubated with anti-
CENP-C serum (gift from Bibi Mellone) at 1:7,500, followed by anti-Ndc80 antibody
(made in house) at 1:5,000 as a loading control. Guinea pig (703-035-155) and
chicken (706-035-148) HRP secondary antibodies (Jackson ImmunoResearch
Laboratories), diluted at 1:5,000, were used in conjunction with their respective
primaries and imaged with a GBox system controlled by GeneSnap software
(Syngene). ImageJ was used to measure band intensities and the CENP-C signal was
normalized to the Ndc80 loading control to determine the knockdown efficiency.
Uncropped images of the western blots are shown in Supplementary Fig. 4.

FRET ratio imaging and analysis. Cells were allowed to adhere to acid-washed,
concanavalin A (Sigma-Aldrich) coated coverslip (Corning) for exactly 1 h, then
assembled into a rose chamber containing Schneider’s media with drugs or solvent
control, when appropriate and subjected to imaging at 25 �C. Cells were imaged for a
maximum of 1 h on a TiE inverted microscope (Nikon) equipped with an iXON
EMCCD camera (Andor Technology) using a 100� 1.4 numerical aperture Plan
Apo violet-corrected series differential interference contrast objective (Nikon).
Metamorph software (Molecular Devices) was used to control the imaging system.
For imaging the TagRFP-T-CENP-C-TSMod FRET reporter, mitotic cells were
identified by the presence of paired sister centromeres and the absence of a nucleus,
and the best focal plane was determined in the RFP channel. Sequential images of
mTurquoise2, mVenus and FRET were taken with equal exposure times.
Background-corrected fluorescence intensities for mTurquoise2 and FRET were
measured in Metamorph software using region-in-a-region background subtraction
by drawing concentric larger and smaller regions manually in MetaMorph around
clusters of kinetochores/centromeres that were in focus. The reported FRET emission
ratios represent the ratios of the background corrected FRET over the background
corrected mTurquoise2 total intensities. The following equations were used:

Background signal ¼
Integrated fluorescence intensitylarger area� Integrated fluorescence intensitysmaller area

Larger Area� Smaller Area

ð1Þ

Total Intensity ¼ Integrated fluorescence intensitysmaller area� Background signal�Smaller Areað Þ

ð2Þ

Bleed-through of the TagRFP-T into the CFP, YFP and FRET channels was measured
by imaging TagRFP-T-a-tubulin-expressing cells under identical conditions as the
FRET imaging experiments. Background corrected CFP, YFP, and FRET signals in
MT-containing regions were then ratioed to the TagRFP signal from that region.

Acceptor photobleaching FRET. Cells were seeded onto a Concanavalin A-coated
acid-washed coverslip and allowed to adhere for 1 h. For Dhc RNAi experiments,
cells were incubated for 1 h in taxol or 0.1% DMSO after allowing them to adhere
to the coverslips for 1 h and imaging was done for a maximum of 60 min following
the 1 h drug or DMSO treatment. Coverslips were then assembled into a rose
chamber containing Schneider’s media (containing 500 nM taxol or 0.1% DMSO
where appropriate) and imaged at 25 �C. All images were collected using a TiE
inverted microscope (Nikon) coupled with A1R laser scanning confocal system
(Nikon) using a 60� 1.4 NA Plan Apo objective (Nikon). Elements (Nikon) was
used to control the imaging system. Best focal plane was determined by taking a
single image using the 561 nm laser. Single plane images were acquired using the
445 and 514 nm lasers pre- and post-photobleaching. To photobleach the acceptor
fluorophore, a square region was drawn around a metaphase plate or interphase
centromeres, and photobleached with the 514 nm laser, using a 50 mw laser at 55%
laser power. All image quantifications were done using Fiji Image J software. A
region was drawn around individual kinetochores/centromeres in pre- and
post- photobleach images to obtain the mTurquoise2 (donor) integrated intensity,
which was corrected by subtracting the background signal obtained by placing the
same sized region in the cytoplasm/nucleoplasm of the same cell. The following
equation was applied to obtain the FRET efficiency:

FRETeff¼ 1�
Intensitydonorðpre-bleachÞ
Intensitydonorðpost-bleachÞ

All statistical analyses were performed using R or Prism. While mTFP1 was
replaced with mTurquoise2 in the TSMod reporter used in this study, we feel that it
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is appropriate to present a force estimate from our reporter that is based on the
theoretical calibration of the original TSMod36 because the two reporters exhibit
identical zero-force FRET efficiencies and have comparable Förster radii.
Bleed-through of the TagRFP-T into the CFP and YFP channels was measured by
imaging TagRFP-T-a-tubulin-expressing cells under identical conditions as the
acceptor photobleaching experiments. Background corrected CFP and YFP signals
in MT-containing regions were then ratioed to the TagRFP signal from that region.

Talin rod—vinculin imaging and analysis. Cells co-expressing CENP-C-TR and
VH-EGP were seeded near full confluency in 500 ml volume onto concanavalin A
coated acid-washed coverslips. After 20 min the volume was brought up to 2 mls
with fresh Schneider’s media (þ 0.1% DMSO or 25mM colchicine) and assembled
into a rose chamber B40 min after seeding. For colchicine-treatments, the cells
were treated with 25 mM colchicine for 60 min before seeding them onto coverslips.
The cells were then imaged on the microscope described above (in ‘FRET ratio
imaging and analysis’) between 45 and 90 min post seeding. Mitotic cells were
identified as described above and the best focal plane was determined in the RFP
channel and sequential images of TagRFP-T and EGFP were taken with equal
exposure times. Background-corrected fluorescence intensities for TagRFP-T and
EGFP were measured using region-in-a-region background subtraction as
described above. To obtain the correction ratio, cells expressing TagRFP-T-CENP-
C-EGFP and treated with 0.1% DMSO were imaged before each experiment using
identical imaging conditions as would be applied to the experimental conditions.
Region-in-a-region background subtraction was applied to measure the ratio of
GFP to RFP signal intensities (the GFP signal was typically B3.5� greater than
that of RFP under the imaging conditions). Since TagRFP-T-CENP-C-EGFP has
equal numbers of EGFP and TagRFP-T molecules, the correction ratio determined
for that day was used to determine the number of VH molecules per TR in the
experimental conditions by dividing the background corrected VH-EGFP to
TagRFP-T-CENPC-TR ratio by the correction ratio. For example, if the correction
ratio for a given day was measured to be 3.5 and the (background corrected) ratio
of VH-EGFP to TagRFP-T-CENP-C-TR kinetochore signals was measured to be 7
then the number of VH per TR would be 2. This method does not count the total
number of TRs or VHs per kinetochore but rather the number of VH molecules
per CENP-C-TR.

To investigate if FRET was occurring between TagRFP-T tagged CENP-C-TR
and VH-EGFP, cells were imaged on an Eclipse Ti-E inverted microscope (Nikon)
equipped with a Borealis (Andor) retrofitted CSU-10 (Yokogawa) spinning disk
head and ORCA-Flash4.0 LT Digital CMOS camera (Hamamatsu) using a
100� 1.49 numerical aperture Apo differential interference contrast objective
(Nikon). Cells expressing either EGFP-a-tubulin or TagRFP-T-a-tubulin were
imaged and background corrected signals from EGFP (donor) and TagRFP-T
(acceptor) into the FRET channel (GFP excitation, RFP emission) in MT-
containing regions were ratioed to the background corrected tubulin signal from
that region to define the spectral bleed-through (bt) into the FRET channel (B6%
for EGFP, and B12% for TagRFP-T). TagRFP-T tagged CENP-C-TR and VH-
EGFP expressing cells were then imaged under identical imaging conditions as the
tubulin-expressing cells and corrected FRET (cFRET) was determined by
subtracting the donor and acceptor bt from the background corrected raw FRET
signal using the following equation:

cFRET ¼ raw FRET� EGFPbt�TagRFPTbt

The corrected FRET values were divided by the donor (EGFP) intensity and
reported as a cFRET ratio.

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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Supplementary Figure 1. (a) Histograms showing the distributions of normalized (to interphase 

condition for each reporter) FRET ratio measurements reported in Fig. 2d. (b) Histograms 

showing the distributions of the interphase and metaphase acceptor photobleaching data 

reported in Fig. 2f. All FRET data was analyzed by R. Shapiro-Wilk Normality test to determine if 

the data exhibited normal distributions. Other than the internal TSMod metaphase FRET ratio 

measurements and the C-TERM TSMod acceptor photobleaching data (interphase and 

metaphase), the data exhibited a non-normal distribution. Thus, pairwise p-values for the C-

TERM acceptor photobleaching interphase and metaphase conditions were determined with the 

Student’s t-test. All other p-values are from the Mann-Whitney-Wilcoxon test since these data 

exhibited non-normal distributions. (c) Measuring bleed-through from TagRFP-T-α-tubulin 

expressing cells on the microscope system used for the wide-field FRET imaging experiments 

reported in Fig. 2d. For comparison a TagRFP-T-CENP-C internal TSMod cell is shown that 

was imaged with the identical imaging parameters, and comparable channels are displayed with 

identical contrast and brightness scaling. Asterisks denote the approximate positon of the 

spindle poles. Bar graphs show quantifications of the spectral bleed-through from the TagRFP-T 

signal into the CFP, YFP, and FRET channels. The background corrected intensities of the 

CFP, YFP and FRET signals are reported as intensities relative to the background corrected 

RFP signal (set to 100). n = 34 TagRFP-T-labeled MT-containing regions from 7 cells. (d) 

Measuring bleed-through from TagRFP-T-α-tubulin expressing cells on the microscope system 

used for the acceptor photobleaching experiments reported in Figs. 2f, h. Representative 

TagRFP-T-α-tubulin expressing cell with the CFP and YFP channels imaged and scaled with 

identical parameters as the pre-bleached mTurquoise2 and mVenus channels shown in Fig. 2e. 

Bar graphs show quantifications of the spectral bleed-through from the TagRFP-T signal into the 

CFP, YFP channels. The background corrected intensities of the CFP, and YFP signals are 

reported as intensities relative to the background corrected RFP signal (set to 100). n = 11 cells. 



The pre- and post-bleach CFP intensities are the only signals that are used to calculate the 

FRET efficiency and the YFP channel is imaged to confirm the efficiency of the acceptor 

photobleaching. Scale bars are 10 µm in (c) and 5 µm in (d). Error bars are SEM. 

 



Supplementary Figure 2

Counting VH-EGFP per TagRFP-T-CENP-C-TR

821 598

CENP-C (N-terminus)

1411990599

CENP-C (C-terminus)

FL-CENP-C
1 141182 990

1)  Image TagRFP-T-CENP-C-EGFP: There is 
the same number of EGFP and TagRFP-T 
fluorophores since it is a single molecule.

2)  Quantify relative intensities of (background 
corrected) EGFP and TagRFP-T signals to get 
a correction ratio.

3) Image TagRFP-T-CENP-C-TR + VH-EGFP 
with the same imaging parameters as above 
(step 1) and apply the correction ratio (step 2)

(Example: If the background corrected ratio of 
VH-EGFP to TagRFP-T-CENP-C-TR at the kineto-
chores is 7 then this value divided by the correction 
ratio of 3.5 yields 2 VH molecules per TR)

(Example: EGFP to TagRFP-T correction ratio = 3.5)



Supplementary Figure 2. Basic outline of the method used to count the number of VH 

molecules bound per CENP-C-TR. Further details are provided in the materials and methods.  
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Supplementary Figure 3. (a) Histograms showing the distributions of VH per TR 

measurements for the internal and C-terminal CENP-C-TR reporters at unattached and 

bioriented metaphase kinetochores. The blue and red histograms represent metaphase and 

unattached measurements respectively. The third and sixth columns contain merged 

metaphase and unattached histograms for the C-terminal and internal reporters. Other than the 

C-terminal TR reporter in metaphase, the data exhibited a non-normal distribution as 

determined by the Shapiro-Wilk Normality test in R. Thus, all reported p-values for these data 

are from the Mann-Whitney-Wilcoxon test. (b) TagRFP-T-α-tubulin and EGFP-α-tubulin 

expressing cells were imaged to quantify spectral bleed-through from EGFP and TagRFP into 

the FRET channel on the spinning disk confocal microscope used to investigate if there was 

FRET between TagRFP-CENP-C-TR and VH-EGFP. Comparable channels are displayed with 

identical contrast and brightness scaling. The imaging conditions yielded ~6% and 12% spectral 

bleed-through from EGFP and TagRFP-T respectively. (c) Representative images of metaphase 

and colchicine-treated cells co-expressing TagRFP-T-CENP-C Internal TR and VH-EGFP 

imaged under the identical conditions as were used to measure the spectral bleed-through into 

the FRET channel. Pixel-by-pixel subtraction of the bleed-through in Metamorph yields no 

detectable FRET (Bleed-through corrected FRET images) between the CENP-C-TR and the 

VH. (d) Bleed-through corrected (c) FRET ratios (cFRET / background corrected EGFP signal) 

for metaphase and colchicine treated cells co-expressing TagRFP-T-CENP-C Internal TR and 

VH-EGFP. No FRET signal is detectable. n = 50 centromeres/kinetochores from 10 metaphase 

cells, n = 48 centromeres from 10 colchicine-treated cells. Scale bars are 10 µm. Error bars are 

SEM 
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